Intracellular translocation of calmodulin and Ca2+/calmodulin-dependent protein kinase II during the development of hypertrophy in neonatal cardiomyocytes

被引:17
|
作者
Gangopadhyay, Jaya Pal [1 ]
Ikemoto, Noriaki [1 ,2 ]
机构
[1] Boston Biomed Res Inst, Watertown, MA 02472 USA
[2] Harvard Univ, Sch Med, Dept Neurol, Boston, MA 02115 USA
关键词
Cardiomyocytes; Hypertrophy; Protein translocation; Calmodulin; CaMKII; Ryanodine receptor; CARDIAC RYANODINE RECEPTOR; HEART-FAILURE; INTERDOMAIN INTERACTIONS; DEFECTIVE REGULATION; DOMAIN INTERACTIONS; FAILING HEARTS; CA2+ LEAK; IDENTIFICATION; DANTROLENE; CAMKII;
D O I
10.1016/j.bbrc.2010.04.129
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have recently shown that stimulation of cultured neonatal cardiomyocytes with endothelin-1 (ET-1) first produces conformational disorder within the ryanodine receptor (RyR2) and diastolic Ca2+ leak from the sarcoplasmic reticulum (SR), then develops hypertrophy (HT) in the cardiomyocytes (Hamada et al., 2009 [3]). The present paper addresses the following question. By what mechanism does crosstalk between defective operation of RyR2 and activation of the HT gene program occur? Here we show that the immuno-stain of calmodulin (CaM) is localized chiefly in the cytoplasmic area in the control cells: whereas, in the ET-1-treated/hypertrophied cells, major immuno-staining is localized in the nuclear region. In addition, fluorescently labeled CaM that has been introduced into the cardiomyocytes using the BioPORTER system moves from the cytoplasm to the nucleus with the development of HT. The immuno-confocal imaging of Ca2+/CaM-dependent protein kinase II (CaMKII) also shows cytoplasmto-nucleus shift of the immuno-staining pattern in the hypertrophied cells. In an early phase of hypertrophic growth, the frequency of spontaneous Ca2+ transients increases, which accompanies with cytoplasm-to-nucleus translocation of CaM. In a later phase of hypertrophic growth, further increase in the frequency of spontaneous Ca2+ transients results in the appearance of trains of Ca2+ spikes, which accompanies with nuclear translocation of CaMKII. The cardio-protective reagent dantrolene (the reagent that corrects the de-stabilized inter-domain interaction within the RyR2 to a normal mode) ameliorates aberrant intracellular Ca2+ events and prevents nuclear translocation of both CaM and CaMKII, then prevents the development of HT. These results suggest that translocation of CaM and CaMKII from the cytoplasm to the nucleus serves as messengers to transmit the pathogenic signal elicited in the surface membrane and in the RyR2 to the nuclear transcriptional sites to activate HT program. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:515 / 521
页数:7
相关论文
共 50 条
  • [1] Phosphorylation and activation of Ca2+/calmodulin-dependent protein kinase phosphatase by Ca2+/calmodulin-dependent protein kinase II
    Kameshita, I
    Ishida, A
    Fujisawa, H
    FEBS LETTERS, 1999, 456 (02) : 249 - 252
  • [2] Characterization of the mechanism of regulation of Ca2+/calmodulin-dependent protein kinase I by calmodulin and by Ca2+/calmodulin-dependent protein kinase
    Matsushita, Masayuki
    Noiru, Angus C.
    Journal of Biological Chemistry, 1998, 273 (34):
  • [3] Characterization of the mechanism of regulation of Ca2+/calmodulin-dependent protein kinase I by calmodulin and by Ca2+/calmodulin-dependent protein kinase kinase
    Matsushita, M
    Nairn, AC
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (34) : 21473 - 21481
  • [4] INACTIVATION OF CA2+/CALMODULIN-DEPENDENT PROTEIN-KINASE-II BY CA2+/CALMODULIN
    ISHIDA, A
    KITANI, T
    OKUNO, S
    FUJISAWA, H
    JOURNAL OF BIOCHEMISTRY, 1994, 115 (06): : 1075 - 1082
  • [5] Subcellular translocation of Ca2+(calmodulin-dependent protein kinase II: Fact or artifact?
    Margrie, TW
    Rostas, JAP
    JOURNAL OF NEUROCHEMISTRY, 1997, 69 (01) : 435 - 436
  • [6] Phosphorylation of calmodulin by Ca2+/calmodulin-dependent protein kinase IV
    Ishida, A
    Kameshita, I
    Okuno, S
    Kitani, T
    Fujisawa, H
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 407 (01) : 72 - 82
  • [7] Regulation of multifunctional Ca2+/calmodulin-dependent protein kinases by Ca2+/calmodulin-dependent protein kinase phosphatase
    Ishida, A
    Okuno, S
    Kitani, T
    Kameshita, I
    Fujisawa, H
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 253 (01) : 159 - 163
  • [8] Distinct roles of calmodulin and Ca2+/calmodulin-dependent protein kinase II in isopreterenol-induced cardiac hypertrophy
    Wang, Siqi
    Li, Jingyuan
    Liu, Yan
    Zhang, Jie
    Zheng, Xi
    Sun, Xuefei
    Lei, Shuai
    Kang, Ze
    Chen, Xiye
    Lei, Ming
    Hu, Huiyuan
    Zeng, Xiaorong
    Hao, Liying
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 526 (04) : 960 - 966
  • [9] Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure
    Zhang, T
    Brown, JH
    CARDIOVASCULAR RESEARCH, 2004, 63 (03) : 476 - 486