The resolvent average for positive semidefinite matrices
被引:21
|
作者:
Bauschke, Heinz H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia Okanagan, Irving K Barber Sch, Dept Math, Kelowna, BC V1V 1V7, CanadaUniv British Columbia Okanagan, Irving K Barber Sch, Dept Math, Kelowna, BC V1V 1V7, Canada
Bauschke, Heinz H.
[1
]
Moffat, Sarah M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia Okanagan, Irving K Barber Sch, Dept Math, Kelowna, BC V1V 1V7, CanadaUniv British Columbia Okanagan, Irving K Barber Sch, Dept Math, Kelowna, BC V1V 1V7, Canada
Moffat, Sarah M.
[1
]
Wang, Xianfu
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia Okanagan, Irving K Barber Sch, Dept Math, Kelowna, BC V1V 1V7, CanadaUniv British Columbia Okanagan, Irving K Barber Sch, Dept Math, Kelowna, BC V1V 1V7, Canada
Wang, Xianfu
[1
]
机构:
[1] Univ British Columbia Okanagan, Irving K Barber Sch, Dept Math, Kelowna, BC V1V 1V7, Canada
We define a new average - termed the resolvent average - for positive semidefinite matrices. For positive definite matrices, the resolvent average enjoys self-duality and it interpolates between the harmonic and the arithmetic averages, which it approaches when taking appropriate limits. We compare the resolvent average to the geometric mean. Some applications to matrix functions are also given. (C) 2009 Elsevier Inc. All rights reserved.