A finite element method for three-dimensional unstructured grid smoothing

被引:17
|
作者
Hansen, G
Zardecki, A
Greening, D
Bos, R
机构
[1] Los Alamos Natl Lab, Div Appl Phys, Computat Sci Methods Grp, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Appl Phys, Mat Sci Grp, Los Alamos, NM 87545 USA
关键词
finite elements; Galerkin methods; mesh generation; elliptic smoothing;
D O I
10.1016/j.jcp.2004.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The finite element method is applied to grid smoothing in three-dimensional geometry, generalizing earlier results obtained for planar geometry. The underlying set of equations for the Cartesian components of grid coordinates, based on the notion of harmonic coordinates, has a natural variational formulation. To estimate the target metric tensor that drives the elliptic grid equations, the metric tensor components are computed on a coarse-grained grid. Numerical examples illustrating the proposed approach are presented together with results from the smoothness functional, which is used to measure the quality of the resulting grid. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:281 / 297
页数:17
相关论文
共 50 条
  • [1] A finite element method for unstructured grid smoothing
    Hansen, G
    Zardecki, A
    Greening, D
    Bos, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (02) : 611 - 631
  • [2] Three-dimensional forward modeling for the SBTEM method using an unstructured finite-element method
    Wang Lu-Yuan
    Yin Chang-Chun
    Liu Yun-He
    Su Yang
    Ren Xiu-Yan
    Hui Zhe-Jian
    Zhang Bo
    Xiong Bing
    [J]. APPLIED GEOPHYSICS, 2021, 18 (01) : 101 - 116
  • [3] Three-dimensional forward modeling for the SBTEM method using an unstructured finite-element method
    Wang Lu-Yuan
    Yin Chang-Chun
    Liu Yun-He
    Su Yang
    Ren Xiu-Yan
    Hui Zhe-Jian
    Zhang Bo
    Xiong Bin
    [J]. Applied Geophysics, 2021, 18 : 101 - 116
  • [4] Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions
    Waltz, J.
    Canfield, T. R.
    Morgan, N. R.
    Risinger, L. D.
    Wohlbier, J. G.
    [J]. COMPUTERS & FLUIDS, 2013, 81 : 57 - 67
  • [5] Discontinuous finite element SN methods on three-dimensional unstructured grids
    Wareing, TA
    McGhee, JM
    Morel, JE
    Pautz, SD
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2001, 138 (03) : 256 - 268
  • [6] Three-dimensional modeling of controlled-source audio-frequency magnetotellurics. using the finite element method on an unstructured grid
    Wang Ya-Lu
    Di Qing-Yun
    Wang Ruo
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (03): : 1158 - 1167
  • [7] The three-dimensional prolonged adaptive unstructured finite element multigrid method for the Navier-Stokes equations
    Wille, SO
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 25 (04) : 371 - 392
  • [8] A three-dimensional finite element arbitrary Lagrangian-Eulerian method for shock hydrodynamics on unstructured grids
    Waltz, J.
    Morgan, N. R.
    Canfield, T. R.
    Charest, M. R. J.
    Risinger, L. D.
    Wohlbier, J. G.
    [J]. COMPUTERS & FLUIDS, 2014, 92 : 172 - 187
  • [9] Parallel solutions of three-dimensional compressible flows using a mixed finite element finite volume method on unstructured grids
    Lanteri, S
    Loriot, M
    [J]. PARALLEL COMPUTATIONAL FLUID DYNAMICS: IMPLEMENTATIONS AND RESULTS USING PARALLEL COMPUTERS, 1996, : 153 - 160
  • [10] Unstructured Grid Finite Element Modeling of the Three-Dimensional Magnetotelluric Responses in a Model With Arbitrary Conductivity and Magnetic Susceptibility Anisotropies
    Yu, Nian
    Chen, Zheng
    Wu, Xialan
    Kong, Wenxin
    Chen, Huang
    Li, Tianyang
    Feng, Xiao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13