Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA

被引:37
|
作者
Singh, Kamalendra
Srivastava, Aashish
Patel, Smita S.
Modak, Mukund J.
机构
[1] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Biochem & Mol Biol, Newark, NJ 07103 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA
关键词
D O I
10.1074/jbc.M611242200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The replication of the genome requires the removal of RNA primers from the Okazaki fragments and their replacement by DNA. In prokaryotes, this process is completed by DNA polymerase I by means of strand displacement DNA synthesis and 5'-nuclease activity. Here, we demonstrate that the strand displacement DNA synthesis is facilitated by the collective participation of Ser(769), Phe(771), and Arg(841) present in the fingers subdomain of DNA polymerase I. The steady and presteady state kinetic analysis of the properties of appropriate mutant enzymes suggest that: ( a) Ser(769) and Phe(771) together are involved in the strand separation via the formation of a flap structure, and ( b) Arg(841) interacts with the template strand to achieve the optimal strand separation and DNA synthesis. The amino acid residues Ser(769) and Phe(771) are constituents of the O1-helix, which together with O and O2 helices form a 3-helix bundle structure. We note that this 3-helix bundle motif also exists in prokaryotic RNA polymerase. Thus in both DNA and RNA polymerases, this motif may have been adopted to achieve the strand separation function.
引用
收藏
页码:10594 / 10604
页数:11
相关论文
共 50 条
  • [1] Modeling translocation dynamics of strand displacement DNA synthesis by DNA polymerase I
    Xie, Ping
    JOURNAL OF MOLECULAR MODELING, 2012, 18 (05) : 1951 - 1960
  • [2] Modeling translocation dynamics of strand displacement DNA synthesis by DNA polymerase I
    Ping Xie
    Journal of Molecular Modeling, 2012, 18 : 1951 - 1960
  • [3] Strand displacement synthesis by yeast DNA polymerase ε
    Ganai, Rais A.
    Zhang, Xiao-Ping
    Heyer, Wolf-Dietrich
    Johansson, Erik
    NUCLEIC ACIDS RESEARCH, 2016, 44 (17) : 8229 - 8240
  • [4] DNA-SYNTHESIS ON DISCONTINUOUS TEMPLATES BY DNA-POLYMERASE-I OF ESCHERICHIA-COLI
    CLARK, JM
    GENE, 1991, 104 (01) : 75 - 80
  • [5] A specific subdomain in φ29 DNA polymerase confers both processivity and strand-displacement capacity
    Rodríguez, I
    Lázaro, JM
    Blanco, L
    Kamtekar, S
    Berman, AJ
    Wang, JM
    Steitz, TA
    Salas, M
    de Vega, M
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (18) : 6407 - 6412
  • [6] DNA polymerase I in constitutive stable DNA replication in Escherichia coli
    Kogoma, T
    Maldonado, RR
    JOURNAL OF BACTERIOLOGY, 1997, 179 (07) : 2109 - 2115
  • [7] A Triad Interaction in the Fingers Subdomain of DNA Polymerase Beta Controls Polymerase Activity
    Murphy, Drew L.
    Jaeger, Joachim
    Sweasy, Joann B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (16) : 6279 - 6287
  • [8] The role of DNA polymerase I in tolerating single-strand breaks generated at clustered DNA damage in Escherichia coli
    Shikazono, Naoya
    Akamatsu, Ken
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] DNA STRAND TRANSFER CATALYZED BY THE 5'-3' EXONUCLEASE DOMAIN OF ESCHERICHIA-COLI DNA-POLYMERASE-I
    ZHANG, WD
    EVANS, DH
    NUCLEIC ACIDS RESEARCH, 1995, 23 (22) : 4620 - 4627
  • [10] Characterization and engineering of a DNA polymerase reveals a single amino-acid substitution in the fingers subdomain to increase strand-displacement activity of A-family prokaryotic DNA polymerases
    Piotrowski, Yvonne
    Gurung, Man Kumari
    Larsen, Atle Noralf
    BMC MOLECULAR AND CELL BIOLOGY, 2019, 20 (01)