Cross-Domain Collaborative Filtering with Review Text

被引:0
|
作者
Xin, Xin [1 ]
Liu, Zhirun [1 ]
Lin, Chin-Yew [2 ]
Huang, Heyan [1 ]
Wei, Xiaochi [1 ]
Guo, Ping [3 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, BJ ER Ctr HVLIP&CC, Beijing, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
[3] Beijing Normal Univ, Image Proc & Pattern Recognit Lab, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing cross-domain recommendation algorithms focus on modeling ratings, while ignoring review texts. The review text, however, contains rich information, which can be utilized to alleviate data sparsity limitations, and interpret transfer patterns. In this paper, we investigate how to utilize the review text to improve cross-domain collaborative filtering models. The challenge lies in the existence of non-linear properties in some transfer patterns. Given this, we extend previous transfer learning models in collaborative filtering, from linear mapping functions to non-linear ones, and propose a cross-domain recommendation framework with the review text incorporated. Experimental verifications have demonstrated, for new users with sparse feedback, utilizing the review text obtains 10% improvement in the AUC metric, and the non-linear method outperforms the linear ones by 4%
引用
收藏
页码:1827 / 1833
页数:7
相关论文
共 50 条
  • [1] Cross-domain mediation in collaborative filtering
    Berkovsky, Shlomo
    Kuflik, Tsvi
    Ricci, Francesco
    [J]. USER MODELING 2007, PROCEEDINGS, 2007, 4511 : 355 - +
  • [2] Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text
    Hu, Guangneng
    Zhang, Yu
    Yang, Qiang
    [J]. WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 2822 - 2829
  • [3] Cross-Domain Collaborative Filtering: A Brief Survey
    Li, Bin
    [J]. 2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 1085 - 1086
  • [4] Rating Knowledge Sharing in Cross-Domain Collaborative Filtering
    Li, Bin
    Zhu, Xingquan
    Li, Ruijiang
    Zhang, Chengqi
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1054 - 1068
  • [5] Neural Cross-Domain Collaborative Filtering with Shared Entities
    Vijaikumar, M.
    Shevade, Shirish
    Murty, M. N.
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 729 - 745
  • [6] TagEmbedSVD: Leveraging Tag Embeddings for Cross-Domain Collaborative Filtering
    Vijaikumar, M.
    Shevade, Shirish
    Murty, M. N.
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 240 - 248
  • [7] Cross-Domain Labeled LDA for Cross-Domain Text Classification
    Jing, Baoyu
    Lu, Chenwei
    Wang, Deqing
    Zhuang, Fuzhen
    Niu, Cheng
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 187 - 196
  • [8] Cold-Start Management with Cross-Domain Collaborative Filtering and Tags
    Enrich, Manuel
    Braunhofer, Matthias
    Ricci, Francesco
    [J]. E-COMMERCE AND WEB TECHNOLOGIES, EC-WEB 2013, 2013, 152 : 101 - 112
  • [9] Cold-start management with cross-domain collaborative filtering and tags
    Enrich, Manuel
    Braunhofer, Matthias
    Ricci, Francesco
    [J]. Lecture Notes in Business Information Processing, 2013, 152 : 101 - 112
  • [10] TCD-CF: Triple cross-domain collaborative filtering recommendation
    Liu, Taiheng
    Deng, Xiuqin
    He, Zhaoshui
    Long, Yonghong
    [J]. PATTERN RECOGNITION LETTERS, 2021, 149 : 185 - 192