Classification of DNA Microarrays Using Artificial Bee Colony (ABC) Algorithm

被引:0
|
作者
Aurora Garro, Beatriz [1 ]
Antonio Vazquez, Roberto [2 ]
Rodriguez, Katya [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Ciudad Univ, Mexico City 04510, DF, Mexico
[2] Univ Salle, Fac Ingn, Intelligent Syst Grp, Mexico City 06140, DF, Mexico
来源
关键词
DNA microarrays; Artificial Bee Colony (ABC) algorithm; feature selection; pattern classification; PCA technique; CANCER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
DNA microarrays are a powerful technique in genetic science due to the possibility to analyze the gene expression level of millions of genes at the same time. Using this technique, it is possible to diagnose diseases, identify tumours, select the best treatment to resist illness, detect mutations and prognosis purpose. However, the main problem that arises when DNA microarrays are analyzed with computational intelligent techniques is that the number of genes is too big and the samples are too few. For these reason, it is necessary to apply pre-processing techniques to reduce the dimensionality of DNA microarrays. In this paper, we propose a methodology to select the best set of genes that allow classifying the disease class of a gene expression with a good accuracy using Artificial Bee Colony (ABC) algorithm and distance classifiers. The results are compared against Principal Component Analysis (PCA) technique and others from the literature.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [1] Gene Expression in DNA Microarrays: A Classification Problem Using Artificial Bee Colony (ABC) Algorithm
    Garro, Beatriz A.
    Vazquez, Roberto A.
    Rodriguez, Katya
    SWARM INTELLIGENCE, ANTS 2014, 2014, 8667 : 284 - +
  • [2] Crop Classification Using Artificial Bee Colony (ABC) Algorithm
    Vazquez, Roberto A.
    Garro, Beatriz A.
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2016, PT II, 2016, 9713 : 171 - 178
  • [3] Classification of DNA microarrays using artificial neural networks and ABC algorithm
    Garro, Beatriz A.
    Rodriguez, Katya
    Vazquez, Roberto A.
    APPLIED SOFT COMPUTING, 2016, 38 : 548 - 560
  • [4] Parallelization of the Artificial Bee Colony (ABC) Algorithm
    Subotic, Milos
    Tuba, Milan
    Stanarevic, Nadezda
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 191 - 196
  • [5] Designing of Interacting RNAs using Artificial Bee Colony (ABC) Algorithm
    Thaiprasit, Jittrawan
    Kaewkamnerdpong, Boonserm
    Chatphakawan, Phanarin
    Ruangkae, Nipapat
    Yamsin, Pornpan
    Leelachuthipong, Nutthaphong
    Meechai, Asawin
    2015 8TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON), 2015,
  • [6] Rock Penetrability Classification Using Artificial Bee Colony (ABC) Algorithm and Self-Organizing Map
    Mikaeil R.
    Haghshenas S.S.
    Hoseinie S.H.
    Haghshenas, Sina Shaffiee (s.shaffiee@yahoo.com), 2018, Springer International Publishing (36) : 1309 - 1318
  • [7] Artificial bee colony (ABC) algorithm on training artificial neural networks
    Karaboga, Dervis
    Akay, Bahriye
    2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 818 - 821
  • [8] Co-clustering optimization using Artificial Bee Colony (ABC) algorithm
    Hussain, Syed Fawad
    Pervez, Adeel
    Hussain, Masroor
    APPLIED SOFT COMPUTING, 2020, 97
  • [9] Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm
    Prasanth R.S.S.
    Hans Raj K.
    Journal of The Institution of Engineers (India): Series C, 2017, 98 (2) : 171 - 177
  • [10] Optimum Design of Electromagnetic Solenoid by Using Artificial Bee Colony (ABC) Algorithm
    Kitagawa, Wataru
    Takeshita, Takaharu
    2012 XXTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2012, : 1393 - 1398