ALMOST EUCLIDEAN SUBSPACES OF l1N VIA EXPANDER CODES

被引:9
|
作者
Guruswami, Venkatesan [1 ,2 ]
Lee, James R. [2 ]
Razborov, Alexander [3 ,4 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[3] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[4] VA Steklov Math Inst, Moscow 117966, Russia
基金
俄罗斯基础研究基金会;
关键词
RANDOMNESS; EMBEDDINGS; SECTIONS; GRAPHS; FIELDS;
D O I
10.1007/s00493-010-2463-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit (in particular, deterministic polynomial time) construction of subspaces X subset of R-N of dimension (1-o(1))N such that for every x is an element of X, (log N)(-O(log log log N)) root N parallel to x parallel to(2) <= parallel to x parallel to(1) <= root N parallel to x parallel to(2). If we are allowed to use N-1/log log N <= N degrees((1)) random bits and dim(X) >= (1-eta)N for any fixed constant eta, the lower bound can be further improved to (log N)(-O(1))root N parallel to x parallel to(2).
引用
收藏
页码:47 / 68
页数:22
相关论文
共 50 条
  • [1] Almost Euclidean subspaces of l1N via expander codes
    Guruswami, Venkatesan
    Lee, James R.
    Razborov, Alexander
    [J]. PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 353 - +
  • [2] Almost Euclidean subspaces of ℓ1N VIA expander codes
    Venkatesan Guruswami
    James R. Lee
    Alexander Razborov
    [J]. Combinatorica, 2010, 30 : 47 - 68
  • [3] Almost-Euclidean Subspaces of l1N via Tensor Products: A Simple Approach to Randomness Reduction
    Indyk, Piotr
    Szarek, Stanislaw
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2010, 6302 : 632 - +
  • [4] EMBEDDING SUBSPACES OF L1 INTO L1N
    TALAGRAND, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (02) : 363 - 369
  • [5] Orthogonal almost locally minimal projections on l1n
    Zippin, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2000, 115 (1) : 253 - 268
  • [6] ε-isometries in l1n
    Vestfrid, Igor A.
    [J]. AEQUATIONES MATHEMATICAE, 2024,
  • [7] EMBEDDING LPM INTO L1N
    JOHNSON, WB
    SCHECHTMAN, G
    [J]. ACTA MATHEMATICA, 1982, 149 (1-2) : 71 - 85
  • [8] Euclidean Sections of l1N with Sublinear Randomness and Error-Correction over the Reals
    Guruswami, Venkatesan
    Lee, James R.
    Wigderson, Avi
    [J]. APPROXIMATION RANDOMIZATION AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2008, 5171 : 444 - +
  • [9] Characterizations of l∞n and l1n and their stabilities
    Martini, Horst
    Wu, Senlin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 688 - 702
  • [10] KASHINS ALMOST EUCLIDEAN ORTHOGONAL DECOMPOSITION OF L-N(1)
    SZAREK, SJ
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 26 (08): : 691 - 694