Improved Fukunaga-Koontz Transform with Compositional Kernel Combination for Hyperspectral Target Detection

被引:2
|
作者
Binol, Hamidullah [1 ]
机构
[1] Florida Int Univ, Dept Elect & Comp Engn, Miami, FL 33174 USA
关键词
Compositional kernel combination; Differential evolution algorithm; Fukunaga-Koontz transform; Hyperspectral imagery; Target detection; QUADRATIC CORRELATION FILTERS; PRINCIPAL COMPONENT ANALYSIS; SELECTION; IMAGES;
D O I
10.1007/s12524-018-0814-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article presents a novel supervised target detection approach on hyperspectral images based on Fukunaga-Koontz Transform (FKT) with compositional kernel combination. The Fukunaga-Koontz Transform is one of the most effective techniques for solving problems that involve two-pattern characteristics. To capture nonlinear properties of data, researchers have extended FKT to kernel FKT (KFKT) by means of kernel machines. However, the performance of KFKT depends on choosing convenient kernel functions and/or selection of the proper parameter(s). In this work, instead of selecting a single kernel for nonlinear version of FKT, we have applied a compositional kernel combination approach to capture the underlying local distributions of hyperspectral remote sensing data. Optimal parameter selection for each kernel function is achieved applying an evolutionary technique called differential evolution algorithm. The proposed new nonlinear target detection algorithm is tested for hyperspectral images. The experimental results verify that the proposed target detection algorithm has effective and promising performance compared to the conventional version for supervised target detection applications.
引用
收藏
页码:1605 / 1615
页数:11
相关论文
共 50 条
  • [1] Improved Fukunaga–Koontz Transform with Compositional Kernel Combination for Hyperspectral Target Detection
    Hamidullah Binol
    [J]. Journal of the Indian Society of Remote Sensing, 2018, 46 : 1605 - 1615
  • [2] Infrared small target detection with kernel Fukunaga-Koontz transform
    Liu, Rui-ming
    Liu, Er-qi
    Yang, Jie
    Zhang, Tian-hao
    Wang, Fang-lin
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2007, 18 (09) : 3025 - 3035
  • [3] Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform
    Binol, Hamidullah
    Ochilov, Shuhrat
    Alam, Mohammad S.
    Bal, Abdullah
    [J]. OPTICS AND LASERS IN ENGINEERING, 2017, 89 : 123 - 130
  • [4] Hyperspectral Image Classification Using Kernel Fukunaga-Koontz Transform
    Dinc, Semih
    Bal, Abdullah
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [5] Tensor Fukunaga-Koontz transform for small target detection in infrared images
    Liu, Ruiming
    Wang, Jingzhuo
    Yang, Huizhen
    Gong, Chenglong
    Zhou, Yuanshen
    Liu, Lipeng
    Zhang, Zhen
    Shen, Shuli
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2016, 78 : 147 - 155
  • [6] Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes
    Binol, Hamidullah
    Bilgin, Gokhan
    Dinc, Semih
    Bal, Abdullah
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (06) : 1287 - 1291
  • [7] Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform
    Binol, Hamidullah
    Bal, Abdullah
    [J]. SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXV, 2016, 9842
  • [8] Improved target detection algorithm using Fukunaga-Koontz transform and distance classifier correlation filter
    Bal, A.
    Alam, M. S.
    Aslan, M. S.
    [J]. AUTOMATIC TARGET RECOGNITION XVI, 2006, 6234
  • [9] Fukunaga-Koontz Transform based dimensionality reduction for hyperspectral imagery
    Ochilov, S.
    Alam, M. S.
    Bal, A.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [10] Improved training for target detection using Fukunaga-Koontz transform and distance classifier correlation filter
    Elbakary, M. I.
    Alam, M. S.
    Aslan, M. S.
    [J]. OPTICAL PATTERN RECOGNITION XIX, 2008, 6977