A STOCHASTIC DIFFERENTIAL GAME FOR THE INHOMOGENEOUS ∞-LAPLACE EQUATION

被引:15
|
作者
Atar, Rami [1 ]
Budhiraja, Amarjit [2 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 02期
关键词
Stochastic differential games; infinity-Laplacian; Bellman-Isaacs equation; EXISTENCE; CURVATURE;
D O I
10.1214/09-AOP494
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a bounded C(2) domain G subset of R(m), functions g is an element of C(partial derivative G, R) and h is an element of C((G) over bar, R backslash {0}), let u denote the unique viscosity solution to the equation -2 Delta(infinity)u = h in G with boundary data g. We provide a representation for u as the value of a two-player zero-sum stochastic differential game.
引用
收藏
页码:498 / 531
页数:34
相关论文
共 50 条