Quality assessment for super-resolution image enhancement

被引:27
|
作者
Reibman, Amy R.
Bell, Robert M.
Gray, Sharon
机构
关键词
D O I
10.1109/ICIP.2006.312895
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A typical image formation model for super-resolution (SR) introduces blurring, aliasing, and added noise. The enhancement itself may also introduce ringing. In this paper, we use subjective tests to assess the visual quality of SR-enhanced images. We then examine how well some existing objective quality metrics can characterize the observed subjective quality. Even full-reference metrics like MSE and SSIM do not always capture visual quality of SR images with and without residual aliasing.
引用
收藏
页码:2017 / 2020
页数:4
相关论文
共 50 条
  • [1] Super-resolution Quality Criterion (SRQC): a super-resolution image quality assessment metric
    Greeshma, M. S.
    Bindu, V. R.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (47-48) : 35125 - 35146
  • [2] Super-resolution Quality Criterion (SRQC): a super-resolution image quality assessment metric
    M. S. Greeshma
    V. R. Bindu
    Multimedia Tools and Applications, 2020, 79 : 35125 - 35146
  • [3] A survey of super-resolution image quality assessment
    Shu, Lei
    Zhu, Qinru
    He, Yujie
    Chen, Wei
    Yan, Jiebin
    Neurocomputing, 2025, 621
  • [4] Novel Image Enhancement for Super-Resolution
    Goto, Kyohei
    Goto, Tomio
    Hirano, Satoshi
    Sakurai, Masaru
    2015 IEEE 4TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), 2015, : 223 - 224
  • [5] Learning-Based Quality Assessment for Image Super-Resolution
    Zhao, Tiesong
    Lin, Yuting
    Xu, Yiwen
    Chen, Weiling
    Wang, Zhou
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3570 - 3581
  • [6] Learning cascade regression for super-resolution image quality assessment
    Xing Quan
    Kaibing Zhang
    Danni Zhu
    Dandan Fan
    Yanting Hu
    Jinguang Chen
    Applied Intelligence, 2023, 53 : 27304 - 27322
  • [7] Objective Image Quality Assessment of Multiframe Super-Resolution Methods
    Lukes, Tomas
    Fliegel, Karel
    Klima, Milos
    2013 23RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2013, : 267 - 272
  • [8] Learning cascade regression for super-resolution image quality assessment
    Quan, Xing
    Zhang, Kaibing
    Zhu, Danni
    Fan, Dandan
    Hu, Yanting
    Chen, Jinguang
    APPLIED INTELLIGENCE, 2023, 53 (22) : 27304 - 27322
  • [9] Mapping super-resolution image quality
    Megan A. Steves
    Ke Xu
    Light: Science & Applications, 13
  • [10] Mapping super-resolution image quality
    Steves, Megan A.
    Xu, Ke
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)