A linear extremal principle

被引:0
|
作者
Treiman, JS [1 ]
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The idea of using an extremal principle for optimization and nonsmooth analysis dates back to convex analysis. In this work an extremal principle in the vein of Mordukhovich is proven for the linear generalized gradient. It is tighter than Mordukhovich's since the normal cones are smaller. However it requires a locally epi-Lipschitz sets, so its applications are more limited. Some applications to nonsmooth calculus and optimization problems are given.
引用
收藏
页码:3118 / 3120
页数:3
相关论文
共 50 条
  • [1] Extremal principle based on the linear subdifferential
    Movahedian, Nooshin
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1354 - 1360
  • [2] THE PRINCIPLE OF EXTREMAL COUPLING
    DINKELACKER, F
    HUBLER, A
    LUSCHER, E
    HELVETICA PHYSICA ACTA, 1988, 61 (1-2): : 72 - 75
  • [3] About Extensions of the Extremal Principle
    Bui H.T.
    Kruger A.Y.
    Vietnam Journal of Mathematics, 2018, 46 (2) : 215 - 242
  • [4] BINDING ORDER AS EXTREMAL PRINCIPLE
    JUG, K
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1977, 81 (10): : 1104 - 1104
  • [5] MAXIMUM PRINCIPLE FOR AN EXTREMAL PROBLEM
    AGAMALIYEV, AG
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1977, (06): : 48 - 51
  • [6] AN EXTREMAL PRINCIPLE OF MACROMOLECULAR EVOLUTION
    DEMETRIUS, L
    PHYSICA SCRIPTA, 1987, 36 (04): : 693 - 701
  • [7] NEW EXTREMAL PRINCIPLE FOR INTERACTING RELATIVISTIC PARTICLES
    TELLENBACH, U
    HELVETICA PHYSICA ACTA, 1976, 49 (03): : 359 - 366
  • [8] Extremal principle of entropy production in the climate system
    Pujol, T
    Llebot, JE
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1999, 125 (553) : 79 - 90
  • [9] Teaching Reiser's extremal principle for hydrodynamics
    Stauffer, D
    AMERICAN JOURNAL OF PHYSICS, 2005, 73 (03) : 282 - 283
  • [10] Extremal principle for the Harper-Hofstadter model
    Das, Kunal K.
    Christ, Jacob
    PHYSICAL REVIEW B, 2025, 111 (07)