Correction of a digital micromirror device lithography system for fabrication of a pixelated liquid crystal micropolarizer array

被引:2
|
作者
Liu, Chang [1 ,2 ]
Zhang, Shiyuan [3 ,4 ]
Liu, Yuqing [5 ]
Lu, Meiying [1 ,2 ]
Cao, Wenhui [1 ,2 ]
Huang, Long [1 ,2 ]
Zhang, Han [1 ,2 ]
Lu, Zifeng [1 ,2 ]
Mu, Quanquan [3 ,4 ]
Liu, Hua [1 ,2 ]
机构
[1] Northeast Normal Univ, Ctr Adv Optoelect Funct Mat Res, 5268 Renmin St, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Natl Demonstrat Ctr Expt Phys Educ, Minist Educ, Key Lab UV Emitting Mat & Technol, 5268 Renmin St, Changchun 130024, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Appl Opt, Changchun 130033, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[5] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, 2699 Qianjin St, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
POLARIZATION IMAGING SENSOR; DIVISION;
D O I
10.1364/OE.453800
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The combination of a digital micromirror device (DMD) lithography system and a rotatable polarizer provides a simple and convenient method to achieve the pixelated liquid crystal micropolarizer (LCMP) array for polarization imaging. In this paper, two crucial problems restricting the high-precision fabrication of LCMP array are pointed out and settled: the dislocation of LCMP pixels caused by parallelism error of the rotating polarizer and the grid defect caused by the gap between micromirrors. After correction, the maximum deviation of the fabricated LCMP pixels was reduced from 3.23 mu m to 0.11 mu m and the grid defect is eliminated. The correction method reported here lays a good foundation for the fine processing of liquid crystal devices with arbitrary photoalignment structure by using the DMD system. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:12014 / 12025
页数:12
相关论文
共 50 条
  • [1] Fabrication of passive micromixer using a digital micromirror device-based maskless lithography system
    Yong-Kyu Cho
    Tae-Heon Han
    Seok-Jae Ha
    Jung-Won Lee
    Jong-Su Kim
    Sun-Min Kim
    Myeong-Woo Cho
    International Journal of Precision Engineering and Manufacturing, 2014, 15 : 1417 - 1422
  • [2] Fabrication of Passive Micromixer using a Digital Micromirror Device-based Maskless Lithography System
    Cho, Yong-Kyu
    Han, Tae-Heon
    Ha, Seok-Jae
    Lee, Jung-Won
    Kim, Jong-Su
    Kim, Sun-Min
    Cho, Myeong-Woo
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2014, 15 (07) : 1417 - 1422
  • [3] Review on liquid crystal micropolarizer array for polarization imaging
    Zhang Shi-yuan
    Sun Zi-jun
    Mu Quan-quan
    Peng Zeng-hui
    Liu Hua
    Liu Chang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (03) : 292 - 309
  • [4] Research Progress of Maskless Digital Lithography Based on Digital Micromirror Device
    Xie Fanglin
    Wang Lei
    Huang Shengzhou
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (11)
  • [5] Optical System with 4 μm Resolution for Maskless Lithography Using Digital Micromirror Device
    Lee, Dong-Hee
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2010, 14 (03) : 266 - 276
  • [6] A beam homogenizer for digital micromirror device lithography system based on random freeform microlenses
    Liu, Zhongyuan
    Liu, Hua
    Lu, Zifeng
    Li, Qiankun
    Li, Jinhuan
    OPTICS COMMUNICATIONS, 2019, 443 : 211 - 215
  • [7] Maskless lithography based on digital micromirror device (DMD) and double sided microlens and spatial filter array
    Dinh, Duc-Hanh
    Chien, Hung-Liang
    Lee, Yung-Chun
    OPTICS AND LASER TECHNOLOGY, 2019, 113 : 407 - 415
  • [8] CMOS Compatible Fabrication Processes for the Digital Micromirror Device
    Gong, Cuiling
    Hogan, Tim
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2014, 2 (03): : 27 - 32
  • [9] Liquid-crystal micropolarizer array for polarization-difference imaging
    Harnett, CK
    Craighead, HG
    APPLIED OPTICS, 2002, 41 (07) : 1291 - 1296
  • [10] Fabrication of dual-wavelength diffractive beam splitters using maskless optical lithography with a digital micromirror device
    Amako, Jun
    Shinozaki, Yu
    OPTICAL MICROLITHOGRAPHY XXIX, 2016, 9780