A Nonsmooth Optimization Approach for Hemivariational Inequalities with Applications to Contact Mechanics

被引:5
|
作者
Jureczka, Michal [1 ]
Ochal, Anna [1 ]
机构
[1] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 83卷 / 03期
基金
欧盟地平线“2020”;
关键词
Nonmonotone friction; Optimization problem; Error estimate; Finite element method; Numerical simulations; NUMERICAL-ANALYSIS; APPROXIMATION;
D O I
10.1007/s00245-019-09593-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce an abstract nonsmooth optimization problem and prove existence and uniqueness of its solution. We present a numerical scheme to approximate this solution. The theory is later applied to a sample static contact problem describing an elastic body in frictional contact with a foundation. This contact is governed by a nonmonotone friction law with dependence on normal and tangential components of displacement. Finally, computational simulations are performed to illustrate obtained results.
引用
收藏
页码:1465 / 1485
页数:21
相关论文
共 50 条
  • [1] A Nonsmooth Optimization Approach for Hemivariational Inequalities with Applications to Contact Mechanics
    Michal Jureczka
    Anna Ochal
    Applied Mathematics & Optimization, 2021, 83 : 1465 - 1485
  • [2] Computational nonsmooth mechanics: Variational and hemivariational inequalities
    Stavroulakis, GE
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (08) : 5113 - 5124
  • [3] A nonsmooth optimization approach for time-dependent hemivariational inequalities
    Jureczka, Michal
    Ochal, Anna
    Bartman, Piotr
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [4] A survey of numerical methods for hemivariational inequalities with applications to contact mechanics
    Ochal, Anna
    Jureczka, Michal
    Bartman, Piotr
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 114
  • [6] Applications of generalized fractional hemivariational inequalities in solid viscoelastic contact mechanics
    Han, Jiangfeng
    Li, Changpin
    Zeng, Shengda
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 115
  • [7] THE ROTHE METHOD FOR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO CONTACT MECHANICS
    Bartosz, Krzysztof
    Sofonea, Mircea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) : 861 - 883
  • [8] Applications of generalized fractional hemivariational inequalities in solid viscoelastic contact mechanics
    Han, Jiangfeng
    Li, Changpin
    Zeng, Shengda
    Communications in Nonlinear Science and Numerical Simulation, 2022, 115
  • [9] Evolutionary variational–hemivariational inequalities with applications to dynamic viscoelastic contact mechanics
    Jiangfeng Han
    Liang Lu
    Shengda Zeng
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [10] Numerical analysis of hemivariational inequalities in contact mechanics
    Han, Weimin
    Sofonea, Mircea
    ACTA NUMERICA, 2019, 28 : 175 - 286