Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case

被引:35
|
作者
Castelli, Mauro [1 ]
Vanneschi, Leonardo [1 ]
De Felice, Matteo [2 ]
机构
[1] Univ Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
[2] ENEA, Energy & Environm Modelling Tech Unit, Rome, Italy
关键词
Forecasting; Electricity demand; Genetic programming; Semantics;
D O I
10.1016/j.eneco.2014.10.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
Accurate and robust short-term load forecasting plays a significant role in electric power operations. This paper proposes a variant of genetic programming, improved by incorporating semantic awareness in algorithm, to address a short term load forecasting problem. The objective is to automatically generate models that could effectively and reliably predict energy consumption. The presented results, obtained considering a particularly interesting case of the South Italy area, show that the proposed approach outperforms state of the art methods. Hence, the proposed approach reveals appropriate for the problem of forecasting electricity consumption. This study, besides providing an important contribution to the energy load forecasting, confirms the suitability of genetic programming improved with semantic methods in addressing complex real-life applications. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 41
页数:5
相关论文
共 50 条
  • [1] Short-term Forecasting of Electricity Consumption in Maputo
    Sotomane, Constantino
    Asker, Lars
    Bostrom, Henrik
    Massingue, Venancio
    2013 INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2013, : 132 - 136
  • [2] Short-Term Load Forecasting using Cartesian Genetic Programming: an Efficient Evolutive Strategy Case: Australian electricity market
    Giacomato, Francisco
    Sala, Enric
    Kampouropoulos, Konstantinos
    Romeral, Luis
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 5087 - 5094
  • [3] Short-term load forecasting based on the method of Genetic Programming
    Huo, Limin
    Fan, Xinqiao
    Xie, Yunfang
    Yin, Jinliang
    2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS, 2007, : 839 - 843
  • [4] Short-term forecasting of industrial electricity consumption in Brazil
    Sadownik, R
    Barbosa, EP
    JOURNAL OF FORECASTING, 1999, 18 (03) : 215 - 224
  • [5] Forecasting short-term electricity consumption using the adaptive grey-based approach-An Asian case
    Li, Der-Chiang
    Chang, Che-Jung
    Chen, Chien-Chih
    Chen, Wen-Chih
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2012, 40 (06): : 767 - 773
  • [6] Forecasting the Short-Term Electricity Consumption of Building Using a Novel Ensemble Model
    Shan, Shubing
    Cao, Buyang
    Wu, Zhiqiang
    IEEE ACCESS, 2019, 7 : 88093 - 88106
  • [7] Short-Term Forecasting of Electricity Consumption Using Artificial Neural Networks - an Overview
    Baric, Ivan
    Grbic, Ratko
    Nyarko, Emmanuel Karlo
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1076 - 1081
  • [8] LSTM-based Short-term Load Forecasting for Building Electricity Consumption
    Wang, Xin
    Fang, Fang
    Zhang, Xiaoning
    Liii, Yajuan
    Wei, Le
    Shi, Yang
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1418 - 1423
  • [9] Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting
    Divina, Federico
    Gilson, Aude
    Gomez-Vela, Francisco
    Torres, Miguel Garcia
    Torres, Jose E.
    ENERGIES, 2018, 11 (04)
  • [10] COMPARISON OF SHORT-TERM FORECASTING METHODS OF ELECTRICITY CONSUMPTION IN MICROGRIDS
    Parfenenko, Yu. V.
    Shendryk, V. V.
    Kholiavka, Ye. P.
    Pavlenko, P. M.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2023, (01) : 14 - 23