A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Magnetic Core-Shell Fe3O4@C/Au Nanoparticle Nanocomposite

被引:6
|
作者
Ni, Xiao [1 ]
Tian, Mingwei [1 ]
Sun, Jun [1 ]
Chen, Xiaojun [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem & Mol Engn, Nanjing 211800, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCATALYTIC REDUCTION; HIGH-PERFORMANCE; AG; BIOSENSOR; ADSORBENT; ELECTRODE; GLUCOSE; ALLOY; WATER; ACID;
D O I
10.1155/2021/8839895
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fe3O4@C/Au nanoparticle (AuNP) nanocomposites were prepared through electrostatic adsorption of AuNPs onto PDDAfunctionalized core/shell Fe3O4@C magnetic nanospheres, which had been synthesized by a facile solvothermal method. The morphology and composition of the nanocomposites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), etc. Moreover, highly electrocatalytic activity to the reduction of hydrogen peroxide (H2O2) was also exhibited on the Fe3O4@C/AuNP-modified indium tin oxide (ITO) electrode. The effect of solution pH and the modification amount of Fe3O4@C/AuNPs on the performance of electrocatalytic H2O2 reduction was investigated. Under the optimal conditions, the catalytic current showed a linear relationship with the increase of H2O2 concentration in the range of 0.007-15 mM and a detection limit of 5 pM. The H2O2 sensor showed high selectivity for H2O2 detection, which could effectively resist the interference of ascorbic acid (AA), uric acid (UA), and citric acid (CA). Finally, the H2O2 sensor was used in the real fetal bovine serum to detect H2O2 and obtained satisfactory results with the recovery values ranging from 95.14 to 103.6%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Preparation and characterization of core-shell structure Fe3O4@C magnetic nanoparticles
    Shi, Da
    Yang, Hao
    Ji, Shengfu
    Jiang, Sai
    Liu, Xuefei
    Zhang, Danni
    NEW PARADIGM OF PARTICLE SCIENCE AND TECHNOLOGY, PROCEEDINGS OF THE 7TH WORLD CONGRESS ON PARTICLE TECHNOLOGY, 2015, 102 : 1555 - 1562
  • [2] Preparation and tribological properties of core-shell Fe3O4@C microspheres
    Huang, Jian
    Li, Yong
    Jia, Xiaohua
    Song, Haojie
    TRIBOLOGY INTERNATIONAL, 2019, 129 : 427 - 435
  • [3] Nonenzymatic electrochemical sensor based on Fe@Pt core-shell nanoparticles for hydrogen peroxide, glucose and formaldehyde
    Mei, He
    Wu, Wenqin
    Yu, Beibei
    Wu, Huimin
    Wang, Shengfu
    Xia, Qinghua
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 223 : 68 - 75
  • [4] Optical and magnetic properties of small-size core-shell Fe3O4@C nanoparticles
    Chen, Xifang
    Zhou, Yue
    Han, Hongwen
    Wang, Xiaoyu
    Zhou, Lei
    Yi, Zao
    Fu, Zhenjin
    Wu, Xianwen
    Li, Gongfa
    Zeng, Liangcai
    MATERIALS TODAY CHEMISTRY, 2021, 22 (22)
  • [5] Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance
    Wang, Xiao
    Pan, Fei
    Xiang, Zhen
    Zeng, Qingwen
    Pei, Ke
    Che, Renchao
    Lu, Wei
    CARBON, 2020, 157 (157) : 130 - 139
  • [6] Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection
    Tamer, Ugur
    Gundogdu, Yusuf
    Boyaci, Ismail Hakki
    Pekmez, Kadir
    JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (04) : 1187 - 1196
  • [7] Novel nonenzymatic hydrogen peroxide sensor based on Fe3O4/PPy/Ag nanocomposites
    Qi, Chengcheng
    Zheng, Jianbin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 747 : 53 - 58
  • [8] Detection of hydrogen peroxide based on CeO2@Au core-shell nanoparticle
    Zhang, Lina
    Ge, Shenguang
    Yu, Jinghua
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (02) : 495 - 495
  • [9] Shell Thickness-Dependent Microwave Absorption of Core-Shell Fe3O4@C Composites
    Du, Yunchen
    Liu, Wenwen
    Qiang, Rong
    Wang, Ying
    Han, Xijiang
    Ma, Jun
    Xu, Ping
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) : 12997 - 13006
  • [10] Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe3O4 magnetic bionanoparticles for glucose sensor
    Peng, Hua-Ping
    Liang, Ru-Ping
    Zhang, Li
    Qiu, Jian-Ding
    BIOSENSORS & BIOELECTRONICS, 2013, 42 : 293 - 299