Projector Quantum Monte Carlo Method for Nonlinear Wave Functions

被引:26
|
作者
Schwarz, Lauretta R. [1 ]
Alavi, A. [1 ,2 ]
Booth, George H. [3 ]
机构
[1] Univ Cambridge, Lensfield Rd, Cambridge CB2 1EW, England
[2] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[3] Kings Coll London, Dept Phys, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
ALGORITHMS; STATE;
D O I
10.1103/PhysRevLett.118.176403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We reformulate the projected imaginary-time evolution of the full configuration interaction quantum Monte Carlo method in terms of a Lagrangian minimization. This naturally leads to the admission of polynomial complex wave function parametrizations, circumventing the exponential scaling of the approach. While previously these functions have traditionally inhabited the domain of variational Monte Carlo approaches, we consider recent developments for the identification of deep-learning neural networks to optimize this Lagrangian, which can be written as a modification of the propagator for the wave function dynamics. We demonstrate this approach with a form of tensor network state, and use it to find solutions to the strongly correlated Hubbard model, as well as its application to a fully periodic ab initio graphene sheet. The number of variables which can be simultaneously optimized greatly exceeds alternative formulations of variational Monte Carlo methods, allowing for systematic improvability of the wave function flexibility towards exactness for a number of different forms, while blurring the line between traditional variational and projector quantum Monte Carlo approaches.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A novel method for optimizing quantum Monte Carlo wave functions
    Huang, HX
    Cao, ZX
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (01): : 200 - 205
  • [2] Phaseless auxiliary field quantum Monte Carlo with projector-augmented wave method for solids
    Taheridehkordi, Amir
    Schlipf, Martin
    Sukurma, Zoran
    Humer, Moritz
    Grueneis, Andreas
    Kresse, Georg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (04):
  • [3] Multideterminant Wave Functions in Quantum Monte Carlo
    Morales, Miguel A.
    McMinis, Jeremy
    Clark, Bryan K.
    Kim, Jeongnim
    Scuseria, Gustavo E.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (07) : 2181 - 2188
  • [4] Semistochastic Projector Monte Carlo Method
    Petruzielo, F. R.
    Holmes, A. A.
    Changlani, Hitesh J.
    Nightingale, M. P.
    Umrigar, C. J.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [5] PROJECTOR MONTE-CARLO METHOD
    BLANKENBECLER, R
    SUGAR, RL
    [J]. PHYSICAL REVIEW D, 1983, 27 (06): : 1304 - 1311
  • [6] The diffusion quantum Monte Carlo method: Designing trial wave functions for NiO
    Needs, RJ
    Towler, MD
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (28): : 5425 - 5434
  • [7] Monte Carlo wave functions and nonlinear master equations
    Castin, Y
    Molmer, K
    [J]. PHYSICAL REVIEW A, 1996, 54 (06): : 5275 - 5290
  • [8] PROJECTOR APPROXIMATION AND QUANTUM MONTE-CARLO
    FYE, RM
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1994, 5 (03): : 483 - 488
  • [9] Spin contamination in quantum Monte Carlo wave functions
    Huang, CJ
    Filippi, C
    Umrigar, CJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (21): : 8838 - 8847
  • [10] Optimization of Gutzwiller wave functions in quantum Monte Carlo
    Koch, E
    Gunnarsson, O
    Martin, RM
    [J]. PHYSICAL REVIEW B, 1999, 59 (24) : 15632 - 15640