Use of ANNs as classifiers for selective attention brain-computer interfaces

被引:0
|
作者
Angel Lopez, Miguel [1 ]
Pomares, Hector [1 ]
Damas, Miguel [1 ]
Madrid, Eduardo [2 ]
Prieto, Alberto [1 ]
Pelayo, Francisco [1 ]
de la Plaza Hernandez, Eva Maria [1 ]
机构
[1] Univ Granada, Dept Comp Architecture & Comp Technol, E-18071 Granada, Spain
[2] Univ Granada, Dept expt Psychol & Physiol Behav, E-18071 Granada, Spain
来源
关键词
Artificial Neural Networks; brain-computer interfaces; selective attention; Auditory Steady-state Response;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selective attention to visual-spatial stimuli causes decrements of power in alpha band and increments in beta. For steady-state visual evoked potentials (SSVEP) selective attention affects electroencephalogram (EEG) recordings, modulating the power in the range 8-27 Hz. The same behaviour can be seen for auditory stimuli as well, although for auditory steady-state response (ASSR), it is not fully confirmed yet. The design of selective attention based brain-computer interfaces (BCIs) has two major advantages: First, no much training is needed. Second, if properly designed, a steady-state response corresponding to spectral peaks can be elicited, easy to filter and classify. In this paper we study the behaviour of ANNs as classifiers for a selective attention to auditory stimuli based BCI system.
引用
收藏
页码:956 / +
页数:3
相关论文
共 50 条
  • [1] Use of Kohonen maps as feature selector for selective attention brain-computer interfaces
    Lopez, Miguel Angel
    Pomares, Hector
    Damas, Miguel
    Prieto, Alberto
    Hernandez, Eva Maria de la Plaza
    BIO-INSPIRED MODELING OF COGNITIVE TASKS, PT 1, PROCEEDINGS, 2007, 4527 : 407 - +
  • [2] Self-recalibrating classifiers for intracortical brain-computer interfaces
    Bishop, William
    Chestek, Cynthia C.
    Gilja, Vikash
    Nuyujukian, Paul
    Foster, Justin D.
    Ryu, Stephen I.
    Shenoy, Krishna V.
    Yu, Byron M.
    JOURNAL OF NEURAL ENGINEERING, 2014, 11 (02)
  • [3] TSANet: multibranch attention deep neural network for classifying tactile selective attention in brain-computer interfaces
    Hyeonjin Jang
    Jae Seong Park
    Sung Chan Jun
    Sangtae Ahn
    Biomedical Engineering Letters, 2024, 14 : 45 - 55
  • [4] TSANet: multibranch attention deep neural network for classifying tactile selective attention in brain-computer interfaces
    Jang, Hyeonjin
    Park, Jae Seong
    Jun, Sung Chan
    Ahn, Sangtae
    BIOMEDICAL ENGINEERING LETTERS, 2024, 14 (01) : 45 - 55
  • [5] Ethical considerations in the use of brain-computer interfaces
    Mikolajewska, Emilia
    Mikolajewski, Dariusz
    CENTRAL EUROPEAN JOURNAL OF MEDICINE, 2013, 8 (06): : 720 - 724
  • [6] Brain-computer interfaces
    Sajda, Paul
    Mueller, Klaus-Robert
    Shenoy, Krishna V.
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 16 - 17
  • [7] Covert attention allows for continuous control of brain-computer interfaces
    Bahramisharif, Ali
    van Gerven, Marcel
    Heskes, Tom
    Jensen, Ole
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2010, 31 (08) : 1501 - 1508
  • [8] Designing Brain-Computer Interfaces for Attention-Aware Systems
    Peck, Evan M.
    Carlin, Emily
    Jacob, Robert
    COMPUTER, 2015, 48 (10) : 34 - +
  • [9] Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation
    Yang, Siyu
    Li, Ruobing
    Li, Hongtao
    Xu, Ke
    Shi, Yuqing
    Wang, Qingyong
    Yang, Tiansong
    Sun, Xiaowei
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [10] Brain-computer interfaces: a review
    Coyle, S
    Ward, T
    Markham, C
    INTERDISCIPLINARY SCIENCE REVIEWS, 2003, 28 (02) : 112 - 118