Thermal expansion behaviors of epitaxial film for wurtzite GaN studied by using temperature-dependent Raman scattering

被引:3
|
作者
Wang Dang-Hui [1 ]
Xu Tian-Han [1 ]
Song Hai-Yang [1 ]
机构
[1] Xian Shiyou Univ, Coll Mat Sci & Engn, Xian 710065, Peoples R China
基金
美国国家科学基金会;
关键词
epitaxial-film; thermal expansion coefficient; Gruneisen parameter; temperature-dependent Raman scattering; PLANE SAPPHIRE; PHONON; LAYER; ALN;
D O I
10.7498/aps.65.130702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
III-nitride materials have attracted considerable attention in the last decade due to their wide applications in solid-state light devices with their direct wide band-gaps and higher quantum efficiencies. InGaN/GaN multiple quantum well is important active region for light-emitting diode, which can be tuned according to indium composition in the In-x Ga1-xN alloy system. Owing to difficulty in fabricating bulk materials, GaN thin films are heteroepitaxially grown on lattice-mismatched and thermal-expansion-mismatched substrates, such as sapphire (Al2O3), Si and SiC, which subsequently results in a mass of threading dislocations and higher residual strains. On the one hand, dislocations and defects existing in GaN epifilms trap the carriers as scattering centers in the radiative recombination process between electrons and holes, and play an important role in drooping the internal quantum efficiency. On the other hand, higher built-in electric field induced by residual strains existing in GaN epifilm could make the emission wavelength red-shifted. It is common knowledge that temperature is one of the important factors in the growth process of epitaxial films, as a result, further research on thermal expansion behaviors is needed. Based on the above analysis, an in-depth study of thermal expansion behavior of wurtzite GaN epitaxial film is of vital importance both in theory and in application. In this study, we investigate the thermal expansion behaviors of wurtzite GaN epitaxial films by using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K. According to the physical implication, Gruneisen parameter is almost a constant (Gruneisen parameters of all phonon modes are in a range between 1 to 2 for GaN) that characterizes the relationship between the phonon shift and the volume of a solid-state material. More importantly, Gruneisen parameter is relatively insensitive to temperature and suitable for building the connection between the phonon shift and thermal expansion coefficient. Therefore, the linear relationship between the phonon shift and temperature is built and utilized to calculate the thermal expansion coefficient according to the physical implication of the Gruneisen parameter. Conclusions can be obtained as follows. 1) The thermal expansion coefficient of GaN epifilm can be calculated in a certain temperature range by measuring the phonon modes of E-2 (high), A(1) (TO) and E-1 (TO) through using temperature-dependent Raman scattering when the corresponding Gruneisen parameters are determined. 2) The calculated thermal expansion coefficients of GaN epifilm are consistent with the theoretical values. Conclusions and methods in this paper provide an effective quantitative analysis method to characterize the thermal expansion behaviors of other III-nitride epitaxial thin films, such as AlN, InN, AlGaN, InGaN, InAlN etc., which can be of benefit to reducing the dislocation density and improving the luminescence efficiency of light emitting diode. Therefore, research on thermal expansion behaviors of epifilms using temperature-dependent Raman scattering has a direction for further studying the latter-mismatch and thermal-expansion-mismatch between the epitaxial film and substrate.
引用
收藏
页数:7
相关论文
共 21 条
  • [1] Akasaki I., 1992, I PHYS C SER, V129, P851
  • [2] METALORGANIC VAPOR-PHASE EPITAXIAL-GROWTH OF A HIGH-QUALITY GAN FILM USING AN AIN BUFFER LAYER
    AMANO, H
    SAWAKI, N
    AKASAKI, I
    TOYODA, Y
    [J]. APPLIED PHYSICS LETTERS, 1986, 48 (05) : 353 - 355
  • [3] Raman study of the A1(LO) phonon in relaxed and pseudomorphic InGaN epilayers
    Correia, MR
    Pereira, S
    Pereira, E
    Frandon, J
    Alves, E
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (23) : 4761 - 4763
  • [4] Raman and emission characteristics of a-plane InGaN/GaN blue-green light emitting diodes on r-sapphire substrates
    Dong, Yanqun
    Song, Jae-Ho
    Kim, Ho-Jong
    Kim, Tae-Soo
    Ahn, Byung-Jun
    Song, Jung-Hoon
    Cho, In-Sung
    Im, Won-Taek
    Moon, Youngboo
    Hwang, Sung-Min
    Hong, Soon-Ku
    Lee, Seog-Woo
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
  • [5] Anharmonicity of the E2(high) and A1(LO) phonons in GaN studied by temperature-dependent Raman spectroscopy
    Giehler, M
    Ramsteiner, M
    Waltereit, P
    Brandt, O
    Ploog, KH
    Obloh, H
    [J]. PHYSICA B-CONDENSED MATTER, 2002, 316 : 162 - 165
  • [6] Gomez-Gomez M I, 2011, ANN PHYS, V523, P51
  • [7] OPTICAL PHONON MODES IN GAN AND ALN
    GORCZYCA, I
    CHRISTENSEN, NE
    BLANCA, ELPY
    RODRIGUEZ, CO
    [J]. PHYSICAL REVIEW B, 1995, 51 (17): : 11936 - 11939
  • [8] Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering
    Irmer, G.
    Brumme, T.
    Herms, M.
    Wernicke, T.
    Kneissl, M.
    Weyers, M.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 (Suppl 1) : S51 - S57
  • [9] James P, 2010, SOLID STATE PHYS INT, P101
  • [10] Resonant Raman scattering in strained and relaxed InGaN/GaN multi-quantum wells
    Lazic, S
    Moreno, M
    Calleja, JM
    Trampert, A
    Ploog, KH
    Naranjo, FB
    Fernandez, S
    Calleja, E
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (06) : 1 - 3