Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials

被引:38
|
作者
Mizumoto, Tetsuya [1 ]
Baets, Roel [2 ]
Bowers, John E. [3 ,4 ]
机构
[1] Tokyo Inst Technol, Tokyo, Japan
[2] Univ Ghent, Fac Engn & Architecture, Ghent, Belgium
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
WAVE-GUIDE ISOLATORS; RING RESONATORS; CIRCULATORS; DESIGN; BAND;
D O I
10.1557/mrs.2018.125
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical isolators and circulators are important elements in many photonic systems. These nonreciprocal devices are typically made of bulk optical components and are difficult to integrate with other elements of photonic integrated circuits. This article discusses the best performance for waveguide isolators and circulators achieved with heterogeneous bonding. By virtue of the bonding technology, the devices can make use of a large magneto-optical effect provided by a high-quality single-crystalline garnet grown in a separate process on a lattice-matched substrate. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer contributes to the large penetration of the optical field into a magneto-optical garnet used as an upper-cladding layer. This enhances the magneto-optical phase shift and contributes greatly to reducing the device footprint and the optical loss. Several versions of silicon waveguide optical isolators and circulators, both based on the magneto-optical phase shift, are demonstrated with an optical isolation ratio of >= 30 dB in a wavelength band of 1550 nm. Furthermore, the isolation wavelength can be effectively tuned over several tens of nanometers.
引用
收藏
页码:419 / 424
页数:6
相关论文
共 50 条