Weak and strong convergence of the Ishikawa iterative process for a finite family of asymptotically nonexpansive mappings

被引:7
|
作者
Cianciaruso, Filomena [1 ]
Marino, Giuseppe [1 ]
Wang, Xuewu [2 ]
机构
[1] Univ Calabria, Dipartimento Matemat, Arcavacata Di Rende, CS, Italy
[2] Shandong Inst Business & Technol, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
关键词
Asymptotically nonexpansive mapping; Uniformly convex Banach space; Ishikawa implicit iterative process with errors; Weak and strong convergence; Common fixed point; COMMON FIXED-POINTS; THEOREMS; ERRORS;
D O I
10.1016/j.amc.2010.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an Ishikawa implicit iterative process with errors for a finite family of N asymptotically nonexpansive mappings as follows: {x(n) = (1 - alpha(n) - gamma(n))x(n-1) + alpha(n)T(i(n >)(k(n >)y(n) + gamma(n)u(n), y(n) = (1 - beta(n) - delta(n))x(n) + beta(n)T(i(n >)(k(n >)x(n) + delta(n)v(n), n >= 1, where, for any n is an element of N fixed, k(n) - 1 denotes the quotient of the division of n by N and i(n) the rest, i.e. n = (k(n) - 1)N + i(n), i(n) is an element of {1, ..., N}. The sequences {alpha(n)}, {beta(n)}, {gamma(n)}, {delta(n)} are four real sequences in [0,1] satisfying alpha(n) + gamma(n) <= 1 and beta(n) + delta(n) <= 1 for all n >= 1, {u(n)}, {v(n)} are two bounded sequences and x(0) is a given point. In the setting of uniformly convex Banach spaces we give some results of weak and strong convergence of the above iterative process. The results presented here are situated on the line of research of the corresponding results of Sun [J. Math. Anal. Appl. 286 (1) (2003) 351-358], Osilike [J. Math. Anal. Appl. 294 (1) (2004) 73-81], Chang et al. [J. Math. Anal. Appl. 313 (1) (2006) 273-283], Gu [J. Math. Anal. Appl. 329 (2) (2007) 766-776], Huang and Noor [Appl. Math. Comput. 190 (1) (2007) 356-361], Su and Qin [Appl. Math. Comput. 186 (1) (2007) 271-278), Zhou et al. [Appl. Math. Comput. 173 (1) (2006) 196-212] and some others. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3558 / 3567
页数:10
相关论文
共 50 条