An improved lower bound for the Traveling Salesman constant

被引:1
|
作者
Gaudio, Julia [1 ]
Jaillet, Patrick [2 ]
机构
[1] MIT, Operat Res Ctr, 1 Amherst St, Cambridge, MA 02142 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
Traveling Salesman problem; Geometric probability; Euclidean combinatorial optimization;
D O I
10.1016/j.orl.2019.11.007
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let X-1, X-2, ..., X-n be independent uniform random variables on [0, 1](2). Let L(X-1, ..., X-n) be the length of the shortest Traveling Salesman tour through these points. Beardwood et al (1959) showed that there exists a constant beta such that lim(n ->infinity)L(X-1, ..., X-n)/root n=beta almost surely. It was shown that beta >= 0.625. Building upon an approach proposed by Steinerberger (2015), we improve the lower bound to beta >= 0.6277. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条