On Cox rings of K3 surfaces

被引:34
|
作者
Artebani, Michela [1 ]
Hausen, Juergen [2 ]
Laface, Antonio [1 ]
机构
[1] Univ Concepcion, Dept Matemat, Concepcion, Chile
[2] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
Cox rings; K3; surfaces; K-3; SURFACES; COMBINATORICS;
D O I
10.1112/S0010437X09004576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Cox rings of K3 surfaces. A first result is that a K3 surface has a finitely generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we investigate degrees of generators and relations for Cox rings of K3 surfaces of Picard number two, and explicitly compute the Cox rings of generic K3 surfaces with a non-symplectic involution that have Picard number 2 to 5 or occur as double covers of del Pezzo surfaces.
引用
收藏
页码:964 / 998
页数:35
相关论文
共 50 条
  • [1] Cox rings of K3 surfaces of Picard number three
    Artebani, Michela
    Correa Deisler, Claudia
    Laface, Antonio
    [J]. JOURNAL OF ALGEBRA, 2021, 565 : 598 - 626
  • [2] Cox rings of K3 surfaces with Picard number 2
    Ottem, John Christian
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (04) : 709 - 715
  • [3] Mori dream K3 surfaces of Picard number four: projective models and Cox rings
    Michela Artebani
    Claudia Correa Deisler
    Xavier Roulleau
    [J]. Israel Journal of Mathematics, 2023, 258 : 81 - 135
  • [4] Mori dream K3 surfaces of Picard number four: projective models and Cox rings
    Artebani, Michela
    Deisler, Claudia Correa
    Roulleau, Xavier
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2023, 258 (01) : 81 - 135
  • [5] INVARIANT SUBRING OF THE COX RING OF K3 SURFACES
    Sannai, Akiyoshi
    [J]. MATEMATICHE, 2019, 74 (01): : 3 - 11
  • [6] K3 SURFACES
    BEAUVILLE, A
    [J]. ASTERISQUE, 1983, (105-) : 217 - 229
  • [7] On K3 Surface Quotients of K3 or Abelian Surfaces
    Garbagnati, Alice
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 338 - 372
  • [8] An isoceny of K3 surfaces
    Van Geemen, B
    Top, J
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 209 - 223
  • [9] DEGENERATION OF K3 SURFACES
    NISHIGUCHI, K
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (02): : 267 - 300
  • [10] Families of K3 surfaces
    Borcherds, RE
    Katzarkov, L
    Pantev, T
    Shepherd-Barron, NI
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 183 - 193