in vitro activation;
xenogeneic porcine cells;
human NK cells;
limiting dilution;
cyclosporine A;
ADCC;
fetal porcine islet cells;
D O I:
10.1111/j.1399-3089.1998.tb00019.x
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
In vitro studies of human NK cell-mediated cytotoxicity and ADCC against porcine target cells were performed. Stimulation of human PBMC responder cells with either allogeneic or xenogeneic porcine cells led to a marked increase in NK cell reactivity, Maximum reactivity was reached following 3-6 days of in vitro culture. The sensitivity of target cells ranked as follows: K562 > porcine PHA-induced lymphoblasts > resting porcine PBMC. Limiting dilution analysis showed that allo-and xeno-stimulation in vitro led to differentiation of similar frequencies of effector NK cells. Split culture experiments showed that single NK effector cells were cytotoxic against both K562 and porcine lymphoblasts, demonstrating that individual NK cells lack species specificity. NK effector cell generation stimulated by xenogeneic cells was cyclosporin A (CsA) sensitive and dependent on the presence of autologous responder T lymphocytes, a dependence that was completely reconstituted by the sole addition of human IL-2. Xenostimulation of enriched CD3+ cells also led to a preferential appearance of CD16+ or CD56+ lymphoblasts. Natural xenoreactive human anti-porcine antibodies are mainly of IgM and IgG2 subclasses, but antibodies in xenoimmunised patients reactive against porcine lymphocytes and fetal porcine islet cells were also of IgG1 and IgG3 subclasses. The same subclass distribution was found among antibodies specific for gal alpha 1,3 gal epitopes as shown by tests performed with alpha 1,3 galactosyltransferase-transfected Raji cells (human Burkitt lymphoma cells). Natural antibodies did not mediate ADCC, whereas gal alpha 1,3 gal-specific antibodies in sera from xenoimmunised patients did. Fetal porcine islet cells were sensitive to human NK cell-mediated cytotoxicity and to ADCC mediated by xenoimmune sera.