A note on weakly Lindelof frames

被引:1
|
作者
Abedi, Mostafa [1 ]
机构
[1] Esfarayen Univ Technol, Esfarayen, North Khorasan, Iran
关键词
Frame; weakly Lindelof frame; weakly realcompact frame; sigma-proper; neighourhood strongly divisible ideal; uniformly closed ideal; POINTFREE TOPOLOGY; COMPACTIFICATION; REALCOMPACTNESS; LOCALES; IDEALS; RINGS;
D O I
10.2989/16073606.2017.1399942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of sigma-properness of a subset of a frame is introduced. Using this notion, we give necessary and sucient conditions for a frame to be weakly Lindelof. We show that a frame is weakly Lindelof if and only if its semiregularization is weakly Lindelof. For a completely regular frame L, we introduce a condition equivalent to weak realcompactness based on maximal ideals of the cozero part of L. This enables us to show that every weakly realcompact almost P -frame is realcompact. A new characterization of weakly Lindelof frames in terms of neighbourhood strongly divisible ideals of ?? is provided. The closed ideals of ?? equipped with the uniform topology are applied to describe weakly Lindelof frames.
引用
收藏
页码:745 / 760
页数:16
相关论文
共 50 条
  • [1] A NOTE ON WEAKLY LINDELOF DETERMINED BANACH SPACES
    Gonzalez, A.
    Montesinos, V.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (03) : 613 - 621
  • [2] Mappings on weakly Lindelof and weakly regular-Lindelof spaces
    Fawakhreh, Anwar Jabor
    Kilicman, Adem
    APPLIED GENERAL TOPOLOGY, 2011, 12 (02): : 135 - 141
  • [3] WEAKLY LINEARLY LINDELOF MONOTONICALLY NORMAL SPACES ARE LINDELOF
    Juhasz, Istvan
    Tkachuk, Vladimir V.
    Wilson, Richard G.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (04) : 523 - 535
  • [4] PRODUCTS OF WEAKLY LINDELOF SPACES
    HAJNAL, A
    JUHASZ, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (02) : 454 - 456
  • [5] Weakly dually Lindelof spaces
    Xuan, Wei-Feng
    Song, Yan-Kui
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [6] SOME REMARKS ON ALMOST LINDELOF SPACES AND WEAKLY LINDELOF SPACES
    Song, Yan-Kui
    Zhang, Yun-Yun
    MATEMATICKI VESNIK, 2010, 62 (01): : 77 - 83
  • [7] A NOTE ON LINDELOF SPACES
    DISSANAYAKE, UNB
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (10): : 1117 - 1118
  • [8] REMARKS ON STAR WEAKLY LINDELOF SPACES
    Song, Yan-Kui
    Xuan, Wei-Feng
    QUAESTIONES MATHEMATICAE, 2023, 46 (01) : 73 - 83
  • [9] ON PAIRWISE WEAKLY LINDELOF BITOPOLOGICAL SPACES
    Kilicman, A.
    Salleh, Z.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (03) : 469 - 485
  • [10] ON WEAKLY LINDELOF BANACH-SPACES
    ARGYROS, S
    MERCOURAKIS, S
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (02) : 395 - 450