ON THE ILL-POSEDNESS OF THE TRIPLE DECK MODEL

被引:3
|
作者
Dietert, Helge [1 ,2 ]
Gerard-Varet, David [1 ,2 ]
机构
[1] Univ Paris Cite, F-75013 Paris, France
[2] Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche IMJ PRG, F-75013 Paris, France
关键词
unsteady boundary layer; triple-deck model; analytic instabilities; spectral analysis; BOUNDARY-LAYER; ANALYTIC SOLUTIONS; PRANDTL EQUATIONS; EXISTENCE; SINGULARITY; INSTABILITY; STABILITY; EULER; FLOW;
D O I
10.1137/21M1427401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the stability properties of the so-called triple deck model, a classical refinement of the Prandtl equation to describe boundary layer separation. Combining the methodol-ogy introduced in [A.-L. Dalibard et al., SIAM J. Math. Anal., 50 (2018), pp. 4203-4245], based on complex analysis tools, and stability estimates inspired from Dietert and Ge'\rard-Varet [Anal. PDE, 5 (2019), 8], we exhibit unstable linearizations of the triple deck equation. The growth rates of the corresponding unstable eigenmodes scale linearly with the tangential frequency. This shows that the recent result of Iyer and Vicol [Comm. Pure Appl. Math., 74 (2021), pp. 1641--1684] of local well-posedness for analytic data is essentially optimal.
引用
收藏
页码:2611 / 2633
页数:23
相关论文
共 50 条