A generalized estimating equations approach to mixed-effects ordinal probit models

被引:5
|
作者
Johnson, TR [1 ]
Kim, JS
机构
[1] Univ Idaho, Dept Stat, Moscow, ID 83844 USA
[2] Univ Wisconsin, Dept Educ Psychol, Madison, WI 53706 USA
关键词
D O I
10.1348/0007110042307177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Clustered ordinal responses, which are commonplace in behavioural and educational research, are often analysed using mixed-effects ordinal probit models. Likelihood-based inference for these models can be computationally burdensome, and may compromise the consistency of estimators if the model is misspecified. We propose an alternative inferential approach based on generalized estimating equations. We show that systems of estimating equations can be specified for mixed-effects ordinal probit models that avoid the potentially heavy computational demands of maximum likelihood estimation, and can also provide inferences that are robust with respect to some forms of model misspecification-particularly serial effects in longitudinal data.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 50 条
  • [1] Generalized estimating equations and generalized linear mixed-effects models for modelling resource selection
    Koper, Nicola
    Manseau, Micheline
    [J]. JOURNAL OF APPLIED ECOLOGY, 2009, 46 (03) : 590 - 599
  • [2] Conditional second-order generalized estimating equations for generalized linear and nonlinear mixed-effects models
    Vonesh, EF
    Wang, H
    Nie, L
    Majumdar, D
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 271 - 283
  • [3] Evaluation of a Bayesian Approach to Estimating Nonlinear Mixed-Effects Mixture Models
    Serang, Sarfaraz
    Zhang, Zhiyong
    Helm, Jonathan
    Steele, Joel S.
    Grimm, Kevin J.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2015, 22 (02) : 202 - 215
  • [4] Estimating mixed-effects differential equation models
    Wang, L.
    Cao, J.
    Ramsay, J. O.
    Burger, D. M.
    Laporte, C. J. L.
    Rockstroh, J. K.
    [J]. STATISTICS AND COMPUTING, 2014, 24 (01) : 111 - 121
  • [5] Estimating mixed-effects differential equation models
    L. Wang
    J. Cao
    J. O. Ramsay
    D. M. Burger
    C. J. L. Laporte
    J. K. Rockstroh
    [J]. Statistics and Computing, 2014, 24 : 111 - 121
  • [6] Ordinal models and generalized estimating equations to evaluate disease severity
    Corrente, JE
    Díaz, MD
    [J]. JOURNAL OF APPLIED STATISTICS, 2003, 30 (04) : 425 - 439
  • [7] Fitting mixed-effects models for repeated ordinal outcomes with the NLMIXED procedure
    Ching-Fan Sheu
    [J]. Behavior Research Methods, Instruments, & Computers, 2002, 34 : 151 - 157
  • [8] Fitting mixed-effects models for repeated ordinal outcomes with the NLMIXED procedure
    Sheu, CF
    [J]. BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 2002, 34 (02): : 151 - 157
  • [9] Estimating functional linear mixed-effects regression models
    Liu, Baisen
    Wang, Liangliang
    Cao, Jiguo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 106 : 153 - 164
  • [10] Generalized Estimating Equations to Binary Probit Model
    Feddag, M-L.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (19) : 3997 - 4010