Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

被引:3
|
作者
Bhat, Goutam [1 ]
Danelljan, Martin [1 ]
Yu, Fisher [1 ]
Van Gool, Luc [1 ]
Timofte, Radu [1 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
关键词
KERNEL REGRESSION; IMAGE; RESOLUTION; RECONSTRUCTION; RESTORATION; FRAMES; NOISY;
D O I
10.1109/ICCV48922.2021.00246
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks. Our approach is derived by introducing a learned error metric and a latent representation of the target image, which transforms the MAP objective to a deep feature space. The deep reparametrization allows us to directly model the image formation process in the latent space, and to integrate learned image priors into the prediction. Our approach thereby leverages the advantages of deep learning, while also benefiting from the principled multi-frame fusion provided by the classical MAP formulation. We validate our approach through comprehensive experiments on burst denoising and burst super-resolution datasets. Our approach sets a new state-of-the-art for both tasks, demonstrating the generality and effectiveness of the proposed formulation.
引用
收藏
页码:2440 / 2450
页数:11
相关论文
共 50 条
  • [1] A new denoising model for multi-frame super-resolution image reconstruction
    El Mourabit, Idriss
    El Rhabi, Mohammed
    Hakim, Abdelilah
    Laghrib, Amine
    Moreau, Eric
    SIGNAL PROCESSING, 2017, 132 : 51 - 65
  • [2] Handheld Multi-Frame Super-Resolution
    Wronski, Bartlomiej
    Garcia-Dorado, Ignacio
    Ernst, Manfred
    Kelly, Damien
    Krainin, Michael
    Liang, Chia-Kai
    Levoy, Marc
    Milanfar, Peyman
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [3] Multi-Frame Super-Resolution: A Survey
    Khattab, Mahmoud M.
    Zeki, Akram M.
    Alwan, Ali A.
    Badawy, Ahmed S.
    Thota, Lalitha Saroja
    2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC 2018), 2018, : 348 - 355
  • [4] A Deep Multi-Frame Super-Resolution Network for Dynamic Scenes
    Pan, Ze
    Tan, Zheng
    Lv, Qunbo
    APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [5] Multi-frame super-resolution for face recognition
    Wheeler, Frederick W.
    Liu, Xiaoming
    Tu, Peter H.
    2007 FIRST IEEE INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS, 2007, : 193 - 198
  • [6] Joint Multi-Frame Super-Resolution and Matting
    Prabhu, Sahana M.
    Rajagopalan, A. N.
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1924 - 1927
  • [7] A multi-frame image super-resolution method
    Li, Xuelong
    Hu, Yanting
    Gao, Xinbo
    Tao, Dacheng
    Ning, Beijia
    SIGNAL PROCESSING, 2010, 90 (02) : 405 - 414
  • [8] Multi-frame spatio-temporal super-resolution
    Gharibi, Zahra
    Faramarzi, Sam
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (08) : 4415 - 4424
  • [9] Multi-Frame Super-Resolution Algorithm Based on a WGAN
    Ning, Keqing
    Zhang, Zhihao
    Han, Kai
    Han, Siyu
    Zhang, Xiqing
    IEEE ACCESS, 2021, 9 (09) : 85839 - 85851
  • [10] Performance Evaluation of Multi-frame Super-resolution Algorithms
    Nelson, Kyle
    Bhatti, Asim
    Nahavandi, Saeid
    2012 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING TECHNIQUES AND APPLICATIONS (DICTA), 2012,