共 50 条
Tissue-specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region
被引:26
|作者:
Ideraabdullah, Folami Y.
[1
,2
]
Thorvaldsen, Joanne L.
[1
]
Myers, Jennifer A.
[1
]
Bartolomei, Marisa S.
[1
]
机构:
[1] Univ Penn, Perelman Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
[2] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
基金:
美国国家卫生研究院;
关键词:
BECKWITH-WIEDEMANN-SYNDROME;
MOUSE H19 GENE;
ENHANCER-BLOCKING ACTIVITY;
CTCF-BINDING-SITES;
DNA METHYLATION;
IGF2/H19;
LOCUS;
WILMS-TUMOR;
SEQUENCE UPSTREAM;
SILENCER ELEMENT;
EXPRESSION;
D O I:
10.1093/hmg/ddu344
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Delta 2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, similar to 75% of the ICR. Surprisingly, the Delta 2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.
引用
收藏
页码:6246 / 6259
页数:14
相关论文