Large-Scale Simulations of Bacterial Populations Over Complex Networks

被引:1
|
作者
Teixeira, Andreia Sofia [1 ,2 ]
Monteiro, Pedro T. [5 ]
Carrico, Joao A. [3 ,4 ]
Santos, Francisco C. [1 ,2 ]
Francisco, Alexandre P. [5 ]
机构
[1] Univ Lisbon, INESC ID Lisboa, ATP Grp, Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Rua Alves Redol 9, P-1000029 Lisbon, Portugal
[3] Univ Lisbon, Inst Microbiol, Fac Med, Lisbon, Portugal
[4] Univ Lisbon, Inst Med Mol, Lisbon, Portugal
[5] Univ Lisbon, INESC ID Lisboa, Rua Alves Redol 9, P-1000029 Lisbon, Portugal
关键词
GraphX; large-scale simulations; graph-parallel computations; spark; population genetics; RECOMBINATION;
D O I
10.1089/cmb.2018.0083
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The understanding of bacterial population genetics and evolution is crucial in epidemic outbreak studies and pathogen surveillance. However, all epidemiological studies are limited to their sampling capacities which, by being usually biased or limited due to economic constraints, can hamper the real knowledge of the bacterial population structure of a given species. To this end, mathematical models and large-scale simulations can provide a quantitative analytical framework that can be used to assess how or if limited sampling can infer the true population structure. In this article, we address the large-scale simulation of genetic evolution of bacterial populations, using Wright-Fisher model, in the presence of complex host contact networks. We present an efficient approach for large-scale simulations over complex host contact networks, using MapReduce on top of Apache Spark and GraphX API. We evaluate the relation between cluster computing power and simulations speedup and include insights on how bacterial population diversity can be affected by mutation and recombination rates, and network topology.
引用
收藏
页码:850 / 861
页数:12
相关论文
共 50 条
  • [1] Using Spark and GraphX to Parallelize Large-Scale Simulations of Bacterial Populations over Host Contact Networks
    Teixeira, Andreia Sofia
    Monteiro, Pedro T.
    Carrico, Joao A.
    Santos, Francisco C.
    Francisco, Alexandre P.
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2017, 2017, 10393 : 591 - 600
  • [2] Cascading dominates large-scale disruptions in transport over complex networks
    Dekker, Mark M.
    Panja, Debabrata
    PLOS ONE, 2021, 16 (01):
  • [3] Large-scale simulations of complex physical systems
    Belic, A.
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 76 - 79
  • [4] Large-scale global optimization through consensus of opinions over complex networks
    Askari-Sichani, Omid
    Jalili, Mahdi
    COMPLEX ADAPTIVE SYSTEMS MODELING, 2013, 1
  • [5] Effective interactions for large-scale simulations of complex fluids
    Hansen, JP
    Löwen, H
    BRIDGING TIME SCALES: MOLECULAR SIMULATIONS FOR THE NEXT DECADE, 2002, 605 : 167 - 196
  • [6] Hashkat: large-scale simulations of online social networks
    Ryczko K.
    Domurad A.
    Buhagiar N.
    Tamblyn I.
    Ryczko, Kevin (kevin.ryczko@uoit.net), 1600, Springer-Verlag Wien (07):
  • [7] Towards Self-Healing of Large-Scale Complex Simulations
    Haupt, Tomasz
    Sukhija, Nitin
    PROCEEDINGS OF THE 2012 GRAND CHALLENGES IN MODELING & SIMULATION (GCMS '12), 2012, 44 (11): : 70 - 77
  • [8] Asynchronous Semianonymous Dynamics over Large-Scale Networks
    Ravazzi, Chiara
    Como, Giacomo
    Garetto, Michele
    Leonardi, Emilio
    Tarable, Alberto
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (02): : 1300 - 1343
  • [9] Development of large-scale functional networks over the lifespan
    Schlee, Winfried
    Leirer, Vera
    Kolassa, Stephan
    Thurm, Franka
    Elbert, Thomas
    Kolassa, Iris-Tatjana
    NEUROBIOLOGY OF AGING, 2012, 33 (10) : 2411 - 2421
  • [10] Towards fast hemodynamic simulations in large-scale circulatory networks
    Alvarez, L. A. Mansilla
    Blancoa, P. J.
    Bulant, C. A.
    Feijoo, R. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 344 : 734 - 765