A Genetic Programming Hyper-heuristic: Turning Features into Heuristics for Constraint Satisfaction

被引:0
|
作者
Ortiz-Bayliss, Jose Carlos [1 ]
Oezcan, Ender [1 ]
Parkes, Andrew J. [1 ]
Terashima-Marin, Hugo [2 ]
机构
[1] Univ Nottingham, Sch Comp Sci, Automated Scheduling Optimisat & Planning ASAP, Nottingham NG7 2RD, England
[2] Tecnol Monterrey, Monterrey, Mexico
基金
英国工程与自然科学研究理事会;
关键词
Constraint Satisfaction; Heuristics; Hyperheuristics; Genetic Programming; ALGORITHM; EVOLUTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A constraint satisfaction problem (CSP) is a combinatorial optimisation problem with many real world applications. One of the key aspects to consider when solving a CSP is the order in which the variables are selected to be instantiated. In this study, we describe a genetic programming hyper-heuristic approach to automatically produce heuristics for CSPs. Human-designed 'standard' heuristics are used as components enabling the construction of new variable ordering heuristics which is achieved through the proposed approach. We present empirical evidence that the heuristics produced by our approach are competitive considering the cost of the search when compared to the standard heuristics which are used to obtain the components for the new heuristics. The proposed approach is able to produce specialized heuristics for specific classes of instances that outperform the best standard heuristics for the same instances.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [1] A Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip Packing Heuristics
    Burke, Edmund K.
    Hyde, Matthew
    Kendall, Graham
    Woodward, John
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (06) : 942 - 958
  • [2] Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework
    Bader-El-Den M.
    Poli R.
    Fatima S.
    Memetic Computing, 2009, 1 (3) : 205 - 219
  • [3] A Selection Hyper-Heuristic for Transfer Learning in Genetic Programming
    Russell, Jeffrey
    Pillay, Nelishia
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 631 - 634
  • [4] A genetic programming hyper-heuristic for the multidimensional knapsack problem
    Drake, John H.
    Hyde, Matthew
    Ibrahim, Khaled
    Ozcan, Ender
    KYBERNETES, 2014, 43 (9-10) : 1500 - 1511
  • [5] A Neuro-evolutionary Hyper-heuristic Approach for Constraint Satisfaction Problems
    José Carlos Ortiz-Bayliss
    Hugo Terashima-Marín
    Santiago Enrique Conant-Pablos
    Cognitive Computation, 2016, 8 : 429 - 441
  • [6] A Neuro-evolutionary Hyper-heuristic Approach for Constraint Satisfaction Problems
    Carlos Ortiz-Bayliss, Jose
    Terashima-Marin, Hugo
    Enrique Conant-Pablos, Santiago
    COGNITIVE COMPUTATION, 2016, 8 (03) : 429 - 441
  • [7] Exploring Heuristic Interactions in Constraint Satisfaction Problems: A Closer Look at the Hyper-Heuristic Space
    Ortiz-Bayliss, Jose C.
    Terashima-Marin, Hugo
    Oezcan, Ender
    Parkes, Andrew J.
    Conant-Pablos, Santiago E.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 3307 - 3314
  • [8] Uncertain Commuters Assignment Through Genetic Programming Hyper-Heuristic
    Liao, Xiao-Cheng
    Jia, Ya-Hui
    Hu, Xiao-Min
    Chen, Wei-Neng
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (02) : 2606 - 2619
  • [9] Connecting Automatic Parameter Tuning, Genetic Programming as a Hyper-heuristic, and Genetic Improvement Programming
    Woodward, John R.
    Johnson, Colin G.
    Brownlee, Alexander E. I.
    PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 1357 - 1358
  • [10] A Genetic Programming Based Hyper-heuristic Approach for Combinatorial Optimisation
    Nguyen, Su
    Zhang, Mengjie
    Johnston, Mark
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1299 - 1306