Frameworks for latent variable multivariate regression

被引:0
|
作者
Burnham, AJ [1 ]
Viveros, R [1 ]
MacGregor, JF [1 ]
机构
[1] MCMASTER UNIV,DEPT CHEM ENGN,HAMILTON,ON L8S 4K1,CANADA
关键词
latent variables; multivariate regression; PLS; SIMPLS; reduced rank regression; canonical co-ordinate regression; PCR; objective functions;
D O I
10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A set of frameworks for latent variable multivariate regression method is developed. The first two of these frameworks describe the objective functions satisfied by the latent variables chosen in canonical coordinates regression (CCR), reduced rank regression (RRR) and SIMPLS. These frameworks show the methods as a natural progression from CCR (maximizing correlation) to SIMPLS (maximizing covariance) via RRR (which is an intermediate method). These frameworks are unique in that they look at these methods in terms of latent variables in both the X- and Y-spaces. This adds insight to the nature of the latent variables being chosen. These frameworks are then extended to include PLS for latent variables beyond the first component. This new framework provides a detailed description of the objective function satisfied by PLS latent variables for the multivariate case. It also includes CCR, RRR and SIMPLS, allowing comparisons between the methods. A further framework suggests a new method, undeflated PLS (UDPLS), which adds insight to the effect of the deflation process on PLS. The impact of the objective functions on each of the methods is illustrated on real data from a mineral sorting plant.
引用
收藏
页码:31 / 45
页数:15
相关论文
共 50 条
  • [1] Latent variable multivariate regression modeling
    Burnham, AJ
    MacGregor, JF
    Viveros, R
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 48 (02) : 167 - 180
  • [2] Semiparametric Bayesian latent variable regression for skewed multivariate data
    Bhingare, Apurva
    Sinha, Debajyoti
    Pati, Debdeep
    Bandyopadhyay, Dipankar
    Lipsitz, Stuart R.
    [J]. BIOMETRICS, 2019, 75 (02) : 528 - 538
  • [3] Bayesian latent factor regression for multivariate functional data with variable selection
    Noh, Heesang
    Choi, Taeryon
    Park, Jinsu
    Chung, Yeonseung
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (03) : 901 - 923
  • [4] Bayesian latent factor regression for multivariate functional data with variable selection
    Heesang Noh
    Taeryon Choi
    Jinsu Park
    Yeonseung Chung
    [J]. Journal of the Korean Statistical Society, 2020, 49 : 901 - 923
  • [5] A unified framework for contrast research of the latent variable multivariate regression methods
    He, Zhangming
    Zhou, Haiyin
    Wang, Jiongqi
    Zhai, Shouchao
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 143 : 136 - 145
  • [6] A statistical framework for multivariate latent variable regression methods based on maximum likelihood
    Burnham, AJ
    MacGregor, JF
    Viveros, R
    [J]. JOURNAL OF CHEMOMETRICS, 1999, 13 (01) : 49 - 65
  • [7] A framework for in-silico formulation design using multivariate latent variable regression methods
    Polizzi, Mark A.
    Garcia-Munoz, Salvador
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2011, 418 (02) : 235 - 242
  • [8] Multiscale Latent Variable Regression
    Nounou, Mohamed N.
    Nounou, Hazem N.
    [J]. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING, 2010, 2010
  • [9] Nonlinear Latent Variable Regression
    Madakyaru, Muddu
    Nounou, Mohamed N.
    Nounou, Hazem N.
    [J]. PROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN CONTROL AND AUTOMATION (CICA), 2013, : 81 - 88
  • [10] ON VARIABLE SELECTION IN MULTIVARIATE REGRESSION
    SPARKS, RS
    ZUCCHINI, W
    COUTSOURIDES, D
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (07) : 1569 - 1587