LAGRANGIAN FIBRATIONS ON BLOWUPS OF TORIC VARIETIES AND MIRROR SYMMETRY FOR HYPERSURFACES

被引:46
|
作者
Abouzaid, Mohammed [1 ]
Auroux, Denis [2 ]
Katzarkov, Ludmil [3 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Vienna, Fak Math, Waehringer Guertel 18, A-1090 Vienna, Austria
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2016年 / 123卷 / 01期
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
FLOER COHOMOLOGY; TORUS FIBERS; MANIFOLDS; PAIRS;
D O I
10.1007/s10240-016-0081-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider mirror symmetry for (essentially arbitrary) hypersurfaces in (possibly noncompact) toric varieties from the perspective of the Strominger-Yau-Zaslow (SYZ) conjecture. Given a hypersurface in a toric variety we construct a Landau-Ginzburg model which is SYZ mirror to the blowup of along , under a positivity assumption. This construction also yields SYZ mirrors to affine conic bundles, as well as a Landau-Ginzburg model which can be naturally viewed as a mirror to . The main applications concern affine hypersurfaces of general type, for which our results provide a geometric basis for various mirror symmetry statements that appear in the recent literature. We also obtain analogous results for complete intersections.
引用
收藏
页码:199 / 282
页数:84
相关论文
共 50 条
  • [1] Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces
    Mohammed Abouzaid
    Denis Auroux
    Ludmil Katzarkov
    Publications mathématiques de l'IHÉS, 2016, 123 : 199 - 282
  • [2] MIRROR SYMMETRY AND THE MODULI SPACE FOR GENERIC HYPERSURFACES IN TORIC VARIETIES
    BERGLUND, P
    KATZ, S
    KLEMM, A
    NUCLEAR PHYSICS B, 1995, 456 (1-2) : 153 - 204
  • [3] Weighted blowups and mirror symmetry for toric surfaces
    Kerr, Gabriel
    ADVANCES IN MATHEMATICS, 2008, 219 (01) : 199 - 250
  • [4] Twin Lagrangian fibrations in mirror symmetry
    Leung, Naichung Conan
    Li, Yin
    JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (05) : 1331 - 1387
  • [5] Pseudotoric Lagrangian fibrations of toric and nontoric fano varieties
    N. A. Tyurin
    Theoretical and Mathematical Physics, 2010, 162 : 255 - 275
  • [6] Pseudotoric Lagrangian fibrations of toric and nontoric fano varieties
    Tyurin, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 162 (03) : 255 - 275
  • [7] Torus fibrations of Calabi-Yau hypersurfaces in toric varieties
    Zharkov, I
    DUKE MATHEMATICAL JOURNAL, 2000, 101 (02) : 237 - 257
  • [8] Mirror symmetry for toric branes on compact hypersurfaces
    Alim, M.
    Hecht, M.
    Mayr, P.
    Mertens, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [9] Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold
    Chan, Kwokwai
    Pomerleano, Daniel
    Ueda, Kazushi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 135 - 178
  • [10] Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold
    Kwokwai Chan
    Daniel Pomerleano
    Kazushi Ueda
    Communications in Mathematical Physics, 2016, 341 : 135 - 178