Singular continuous spectra in a pseudointegrable billiard

被引:18
|
作者
Wiersig, J [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 01期
关键词
D O I
10.1103/PhysRevE.62.R21
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The pseudointegrable barrier billiard invented by Hannay and McCraw [J. Phys. A 23, 887 (1990)], a rectangular billiard with line-segment barrier placed on a symmetry axis, is generalized. It is demonstrated that the Fourier spectrum of a typical function on the phase space exhibits a singular continuous component.
引用
收藏
页码:R21 / R24
页数:4
相关论文
共 50 条
  • [1] Pseudointegrable Andreev billiard
    Wiersig, J
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036221
  • [2] SIGNATURE OF CHAOS IN A QUANTUM PSEUDOINTEGRABLE BILLIARD
    CHEON, T
    MIZUSAKI, T
    SHIGEHARA, T
    YOSHINAGA, N
    PHYSICAL REVIEW A, 1991, 44 (02): : R809 - R812
  • [3] Properties of nodal domains in a pseudointegrable barrier billiard
    Dietz, B.
    Friedrich, T.
    Miski-Oglu, M.
    Richter, A.
    Schaefer, F.
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [4] First experimental observation of superscars in a pseudointegrable barrier billiard
    Bogomolny, E.
    Dietz, B.
    Friedrich, T.
    Miski-Oglu, M.
    Richter, A.
    Schaefer, F.
    Schmit, C.
    PHYSICAL REVIEW LETTERS, 2006, 97 (25)
  • [5] QUANTUM DESCRIPTION OF A PSEUDOINTEGRABLE SYSTEM - THE PI-3-RHOMBUS BILLIARD
    BISWAS, D
    JAIN, SR
    PHYSICAL REVIEW A, 1990, 42 (06): : 3170 - 3185
  • [6] STATISTICAL PROPERTIES OF SPECTRA OF PSEUDOINTEGRABLE SYSTEMS
    SHUDO, A
    SHIMIZU, Y
    SEBA, P
    STEIN, J
    STOCKMANN, HJ
    ZYCZKOWSKI, K
    PHYSICAL REVIEW E, 1994, 49 (05) : 3748 - 3756
  • [7] SINGULAR CONTINUOUS SPECTRA IN DISSIPATIVE DYNAMICS
    PIKOVSKY, AS
    ZAKS, MA
    FEUDEL, U
    KURTHS, J
    PHYSICAL REVIEW E, 1995, 52 (01): : 285 - 296
  • [8] Quantum dynamics and decompositions of singular continuous spectra
    Last, Y
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 142 (02) : 406 - 445
  • [9] Dimensional Hausdorff properties of singular continuous spectra
    Jitomirskaya, SY
    Last, Y
    PHYSICAL REVIEW LETTERS, 1996, 76 (11) : 1765 - 1769