ON COVERED PRIME ELEMENTS AND COMPLETE HOMOMORPHISMS OF FRAMES

被引:7
|
作者
Banaschewski, Bernhard [1 ]
Pultr, Ales [2 ,3 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Charles Univ Prague, Dept Appl Math, CZ-11800 Prague 1, Czech Republic
[3] Charles Univ Prague, MFF, ITI, CZ-11800 Prague 1, Czech Republic
关键词
06D22; Prime and covered prime elements in frames; complete frame homomorphisms; well-ordered frame;
D O I
10.2989/16073606.2013.780000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a standard fact that the right adjoints h(*) of general frame homomor- phisms h : L M send prime elements to prime elements. Unlike this, the preservation of covered prime elements by complete frame homomorphism is a special fact. Indeed, if L is totally ordered this happens (for arbitrary M) if and only if L is well-ordered. On the other hand, if M is both a frame and a co-frame there is no restriction on L.This work was motivated by the fact that, in an earlier paper, we erroneously claimed h(*) preserves covered primeness for any complete frame homomorphism h.
引用
收藏
页码:451 / 454
页数:4
相关论文
共 50 条
  • [1] ON HOMOMORPHISMS ON CSASZAR FRAMES
    Chung, Se Hwa
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (03): : 453 - 459
  • [2] On Cauchy homomorphisms of nearness frames
    Banaschewski, B
    Pultr, A
    MATHEMATISCHE NACHRICHTEN, 1997, 183 : 5 - 18
  • [3] Derivations And Homomorphisms in Prime Rings
    Chen Yong(South West Normal University)
    数学季刊, 1991, (01) : 106 - 106
  • [4] GENERALIZED DERIVATIONS AS HOMOMORPHISMS OR AS ANTI-HOMOMORPHISMS IN A PRIME RING
    Ali, Asma
    Kumar, Deepak
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (01): : 17 - 20
  • [5] Counting Homomorphisms to Trees Modulo a Prime
    Goebel, Andreas
    Lagodzinski, J. A. Gregor
    Seidel, Karen
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2021, 13 (03)
  • [6] Prime tight frames
    Jakob Lemvig
    Christopher Miller
    Kasso A. Okoudjou
    Advances in Computational Mathematics, 2014, 40 : 315 - 334
  • [7] Prime tight frames
    Lemvig, Jakob
    Miller, Christopher
    Okoudjou, Kasso A.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) : 315 - 334
  • [8] ABOUT COMPLETE INTERSECTION HOMOMORPHISMS
    TABAA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (18): : 437 - 439
  • [9] ABOUT COMPLETE INTERSECTION HOMOMORPHISMS
    MAROT, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (12): : 381 - 384
  • [10] ON EQUALIZERS IN THE CATEGORY OF FRAMES WITH WEAKLY OPEN HOMOMORPHISMS
    NIEDERLE, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1992, 42 (03) : 497 - 502