Unitary representations and theta correspondence for type I classical groups

被引:12
|
作者
He, HY [1 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
关键词
D O I
10.1016/S0022-1236(02)00170-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the positivity of the Hermitian form (,)(pi) introduced by Li in Invent. Math. 27 (1989) 237-255. Let (G(1), G(2)) be a type I dual pair with G, the smaller group. Let pi be an irreducible unitary representation in the semistable range of theta(MG(1), MG(2)) (see Communications in Contemporary Mathematics, Vol. 2, 2000, pp. 255-283). We prove that the invariant Hermitian form (,)(pi) is positive semidefinite under certain restrictions on the size of G2 and a mild growth condition on the matrix coefficients of pi. Therefore, if does not vanish, theta(MG(1), MG(2))(pi) is unitary. Theta correspondence over R was established by Howe in (J. Amer. Math. Soc. 2 (1989) 535-552). Li showed that theta correspondence preserves unitarity for dual pairs in stable range. Our results generalize the results of Li for type I classical groups (Invent. Math. 27 (1989) 237). The main result in this paper can be used to construct irreducible unitary representations of classical groups of type I. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:92 / 121
页数:30
相关论文
共 50 条