How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study

被引:22
|
作者
Fava, Mauro [1 ]
Protik, Nakib Haider [2 ]
Li, Chunhua [3 ]
Ravichandran, Navaneetha Krishnan [4 ]
Carrete, Jesus [5 ]
van Roekeghem, Ambroise [6 ]
Madsen, Georg K. H. [5 ]
Mingo, Natalio [6 ]
Broido, David [3 ]
机构
[1] Univ Grenoble Alpes, St Martin Dheres, France
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA
[4] Indian Inst Sci, Dept Mech Engn, Bangalore, Karnataka, India
[5] TU Wien, Inst Mat Chem, Vienna, Austria
[6] CEA, LITEN, Grenoble, France
关键词
36;
D O I
10.1038/s41524-021-00519-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The promise enabled by boron arsenide's (BAs) high thermal conductivity (kappa) in power electronics cannot be assessed without taking into account the reduction incurred when doping the material. Using first principles calculations, we determine the kappa reduction induced by different group IV impurities in BAs as a function of concentration and charge state. We unveil a general trend, where neutral impurities scatter phonons more strongly than the charged ones. C-B and Ge-As impurities show by far the weakest phonon scattering and retain BAs kappa values of over similar to 1000 W.K-1.m(-1) even at high densities. Both Si and Ge achieve large hole concentrations while maintaining high kappa. Furthermore, going beyond the doping compensation threshold associated to Fermi level pinning triggers observable changes in the thermal conductivity. This informs design considerations on the doping of BAs, and it also suggests a direct way to determine the onset of compensation doping in experimental samples.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study
    Mauro Fava
    Nakib Haider Protik
    Chunhua Li
    Navaneetha Krishnan Ravichandran
    Jesús Carrete
    Ambroise van Roekeghem
    Georg K. H. Madsen
    Natalio Mingo
    David Broido
    [J]. npj Computational Materials, 7
  • [2] First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?
    Lindsay, L.
    Broido, D. A.
    Reinecke, T. L.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (02)
  • [3] Ultrahigh thermal conductivity confirmed in boron arsenide
    Dames, Chris
    [J]. SCIENCE, 2018, 361 (6402) : 549 - 550
  • [4] Recent progress on cubic boron arsenide with ultrahigh thermal conductivity
    Pan, Fengjiao
    Udalamatta Gamage, Geethal Amila Gamage
    Sun, Haoran
    Ren, Zhifeng
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 131 (05)
  • [5] Strain tuned thermal conductivity reduction in Indium Arsenide (InAs) - A first-principles study
    Muthaiah, Rajmohan
    Garg, Jivtesh
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 196
  • [6] Boron arsenide breaks the rules of thermal conductivity
    Sealy, Cordelia
    [J]. NANO TODAY, 2023, 48
  • [7] Defects and dopants in zinc-blende aluminum arsenide: a first-principles study
    Cao, Jiangming
    Huang, Menglin
    Liu, Dingrong
    Cai, Zenghua
    Wu, Yu-Ning
    Ye, Xiang
    Chen, Shiyou
    [J]. NEW JOURNAL OF PHYSICS, 2021, 23 (01):
  • [8] Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide
    Protik, Nakib Haider
    Carrete, Jesus
    Katcho, Nebil A.
    Mingo, Natalio
    Broido, David
    [J]. PHYSICAL REVIEW B, 2016, 94 (04)
  • [9] Point defects and dopants of boron arsenide from first-principles calculations: Donor compensation and doping asymmetry
    Chae, S.
    Mengle, K.
    Heron, J. T.
    Kioupakis, E.
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (21)
  • [10] Peak thermal conductivity measurements of boron arsenide crystals
    Zhou, Yuanyuan
    Li, Chunhua
    Koirala, Pawan
    Gamage, Geethal Amila
    Wu, Hanlin
    Li, Sheng
    Ravichandran, Navaneetha K.
    Lee, Hwijong
    Dolocan, Andrei
    Lv, Bing
    Broido, David
    Ren, Zhifeng
    Shi, Li
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (06)