Grouped Gaussian processes for solar power prediction

被引:13
|
作者
Dahl, Astrid [1 ]
Bonilla, Edwin V. [2 ]
机构
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] Data61, Sydney, NSW, Australia
关键词
Gaussian processes; multi-task learning; Bayesian nonparametric methods; scalable inference; solar power prediction;
D O I
10.1007/s10994-019-05808-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider multi-task regression models where the observations are assumed to be a linear combination of several latent node functions and weight functions, which are both drawn from Gaussian process priors. Driven by the problem of developing scalable methods for forecasting distributed solar and other renewable power generation, we propose coupled priors over groups of (node or weight) processes to exploit spatial dependence between functions. We estimate forecast models for solar power at multiple distributed sites and ground wind speed at multiple proximate weather stations. Our results show that our approach maintains or improves point-prediction accuracy relative to competing solar benchmarks and improves over wind forecast benchmark models on all measures. Our approach consistently dominates the equivalent model without coupled priors, achieving faster gains in forecast accuracy. At the same time our approach provides better quantification of predictive uncertainties.
引用
收藏
页码:1287 / 1306
页数:20
相关论文
共 50 条
  • [1] Grouped Gaussian processes for solar power prediction
    Astrid Dahl
    Edwin V. Bonilla
    Machine Learning, 2019, 108 : 1287 - 1306
  • [2] On Additive Gaussian Processes for Wind Farm Power Prediction
    Brealy, Simon M.
    Bull, Lawrence A.
    Brennan, Daniel S.
    Beltrando, Pauline
    Sommer, Anders
    Dervilis, Nikolaos
    Worden, Keith
    PROCEEDINGS OF THE 10TH INTERNATIONAL OPERATIONAL MODAL ANALYSIS CONFERENCE, IOMAC 2024, VOL 2, 2024, 515 : 606 - 614
  • [3] Prediction of Daily Global Solar Irradiation Using Temporal Gaussian Processes
    Salcedo-Sanz, Sancho
    Casanova-Mateo, Carlos
    Munoz-Mari, Jordi
    Camps-Valls, Gustau
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (11) : 1936 - 1940
  • [4] Gaussian Processes for radiation dose prediction in nuclear power plant reactors
    Balanya, Sergio A.
    Ramos, Daniel
    Ramirez-Hereza, Pablo
    Toledano, Doroteo T.
    Gonzalez-Rodriguez, Joaquin
    Ariza-Velazquez, Alicia
    Vidal Orlovac, Josip
    Doncel Gutierrez, Nuria
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 230
  • [5] Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction
    Chen, Niya
    Qian, Zheng
    Nabney, Ian T.
    Meng, Xiaofeng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (02) : 656 - 665
  • [6] Subordinated Gaussian processes for solar irradiance
    Berry, Caitlin M.
    Kleiber, William
    Hodge, Bri-Mathias
    ENVIRONMETRICS, 2023, 34 (06)
  • [7] Shift-Invariant Grouped Multi-task Learning for Gaussian Processes
    Wang, Yuyang
    Khardon, Roni
    Protopapas, Pavlos
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2010, 6323 : 418 - 434
  • [8] Twin Gaussian Processes for Structured Prediction
    Liefeng Bo
    Cristian Sminchisescu
    International Journal of Computer Vision, 2010, 87 : 28 - 52
  • [9] Gaussian Processes for Daily Demand Prediction
    Tsang, Wai Kit
    Benoit, Dries F.
    JOURNAL OF FORECASTING, 2020, 39 (03) : 551 - 568
  • [10] Twin Gaussian Processes for Structured Prediction
    Bo, Liefeng
    Sminchisescu, Cristian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 87 (1-2) : 28 - 52