Uncorrelated heteroscedastic LDA based on the weighted pairwise Chernoff criterion

被引:28
|
作者
Qin, AK
Suganthan, PN
Loog, M
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] IT Univ Copenhagen, Dept Innovat, Image Anal Grp, DK-2300 Copenhagen, Denmark
关键词
uncorrelated linear discriminant analysis heteroscedastic; weighted pairwise; Chernoff criterion;
D O I
10.1016/j.patcog.2004.09.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an uncorrelated heteroscedastic LDA (UHLDA) technique, which extends the uncorrelated LDA (ULDA) technique by integrating the weighted pairwise Chernoff criterion. The UHLDA can extract discriminatory, information present in both the differences between per class means and the differences between per class covariance matrices. Meanwhile, the extracted feature components are statistically uncorrelated the maximum number of which exceeds the limitation of the ULDA. Experimental results demonstrate the promising performance of our proposed technique compared with the ULDA. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:613 / 616
页数:4
相关论文
共 50 条
  • [1] Linear dimensionality reduction via a heteroscedastic extension of LDA: The Chernoff criterion
    Loog, M
    Duin, RPW
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (06) : 732 - 739
  • [2] Uncorrelated linear discriminant analysis based on weighted pairwise Fisher criterion
    Liang, Yixiong
    Li, Chengrong
    Gong, Weiguo
    Pan, Yingjun
    [J]. PATTERN RECOGNITION, 2007, 40 (12) : 3606 - 3615
  • [3] Extending kernel Fisher discriminant analysis with the weighted pairwise Chernoff criterion
    Dai, Guang
    Yeung, Dit-Yan
    Chang, Hong
    [J]. COMPUTER VISION - ECCV 2006, PT 4, PROCEEDINGS, 2006, 3954 : 308 - 320
  • [4] Efficient feature extraction based on Regularized Uncorrelated Chernoff Discriminant Analysis
    Qin, A. K.
    Suganthan, P. N.
    Loog, M.
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 125 - +
  • [5] Face Recognition Based On Local Uncorrelated And Weighted Global Uncorrelated Discriminant Transforms
    Jing, Xiaoyuan
    Li, Sheng
    Zhang, David
    Yang, Jingyu
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [6] A HETEROSCEDASTIC EXTENSION OF LDA BASED ON MULTI-CLASS MATUSITA AFFINITY
    Mahanta, Mohammad Shahin
    Plataniotis, Konstantinos N.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 1921 - 1924
  • [7] Chernoff-Based Multi-class Pairwise Linear Dimensionality Reduction
    Rueda, Luis
    Henriquez, Claudio
    Oommen, B. John
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2008, 5197 : 301 - +
  • [8] Multiclass Filters by a Weighted Pairwise Criterion for EEG Single-Trial Classification
    Wang, Haixian
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (05) : 1412 - 1420
  • [9] Study on pairwise LDA for x-vector-based speaker recognition
    Kanagasundaram, A.
    Sridharan, S.
    Ganapathy, S.
    Fookes, C.
    [J]. ELECTRONICS LETTERS, 2019, 55 (14) : 813 - 815
  • [10] Pairwise clustering based on the mutual-information criterion
    Alush, Amir
    Friedman, Avishay
    Goldberger, Jacob
    [J]. NEUROCOMPUTING, 2016, 182 : 284 - 293