A non-linear analysis of Turing pattern formation

被引:5
|
作者
Chen, Yanyan [1 ]
Buceta, Javier [1 ,2 ]
机构
[1] Lehigh Univ, Dept Bioengn, Iacocca Hall, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Chem & Biomol Engn, Iacocca Hall, Bethlehem, PA 18015 USA
来源
PLOS ONE | 2019年 / 14卷 / 08期
基金
美国国家卫生研究院;
关键词
REACTION-DIFFUSION MODEL;
D O I
10.1371/journal.pone.0220994
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reaction-diffusion schemes are widely used to model and interpret phenomena in various fields. In that context, phenomena driven by Turing instabilities are particularly relevant to describe patterning in a number of biological processes. While the conditions that determine the appearance of Turing patterns and their wavelength can be easily obtained by a linear stability analysis, the estimation of pattern amplitudes requires cumbersome calculations due to non-linear terms. Here we introduce an expansion method that makes possible to obtain analytical, approximated, solutions of the pattern amplitudes. We check and illustrate the reliability of this methodology with results obtained from numerical simulations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Non-linear signaling for pattern formation?
    Scheres, B
    [J]. CURRENT OPINION IN PLANT BIOLOGY, 2000, 3 (05) : 412 - 417
  • [2] Non-linear pattern formation in bone growth and architecture
    Salmon, Phil
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2015, 5
  • [3] Pattern formation due to non-linear vortex diffusion
    Wijngaarden, RJ
    Surdeanu, R
    Huijbregtse, JM
    Rector, JH
    Dam, B
    Einfeld, J
    Wördenweber, R
    Griessen, R
    [J]. PHYSICA C, 2000, 341 : 1011 - 1014
  • [4] Pattern formation in polymer films by non-linear processes
    Karthaus, O
    Maruyama, N
    Yabu, H
    Koito, T
    Akagi, K
    Shimomura, M
    [J]. MACROMOLECULAR SYMPOSIA, 2000, 160 : 137 - 142
  • [5] Weakly non-linear bifurcation analysis of pattern formation in strained alloy film growth
    Blanariu, Mihaela
    Spencer, Brian J.
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2007, 72 (01) : 9 - 35
  • [6] PATTERN-FORMATION IN THE SCHLOGL MODEL OF NON-LINEAR KINETICS
    DUNG, MH
    KOZAK, JJ
    [J]. PHYSICA A, 1981, 108 (01): : 63 - 76
  • [7] Non-linear analysis of shear band formation in sand
    Wu, W
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2000, 24 (03) : 245 - 263
  • [8] Non-linear lattice models: complex dynamics, pattern formation and aspects of chaos
    Pouget, J
    [J]. PHILOSOPHICAL MAGAZINE, 2005, 85 (33-35) : 4067 - 4094
  • [9] Pattern formation and non-linear phenomena in stretched discotic liquid crystal fibres
    Wang, L
    Rey, AD
    [J]. LIQUID CRYSTALS, 1997, 23 (01) : 93 - 111
  • [10] Monte Carlo simulation and linear stability analysis of Turing pattern formation in reaction-subdiffusion systems
    Chiu, J. W.
    Chiam, K. -H.
    [J]. PHYSICAL REVIEW E, 2008, 78 (05)