Free actions of abelian p-groups on the n-torus

被引:0
|
作者
Gonçalves, D
Vieira, JP
机构
[1] USP, IME, Dept Matemat, BR-05311970 Sao Paulo, Brazil
[2] UNESP, IGCE, Dept Matemat, BR-13500230 Rio Claro, SP, Brazil
来源
HOUSTON JOURNAL OF MATHEMATICS | 2005年 / 31卷 / 01期
关键词
free actions; integral representation; Bieberbach groups; p-groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus T-n. Set congruent to Z(pk1)(h1) x Z(pk2)(h2) x...x Z(pkr)(hr), r >= 1, k(1) >= k(2) >=...>= k(r) >= 1, p prime. Suppose that the group H acts freely on T-n and the induced representation on pi(1)(T-n) congruent to Z(n) is faithful and has first Betti number b. We show that the numbers n, p, b, k(i) and h(i) (i = 1,..,r) satisfy some relation. In particular, when H congruent to Z(p)(h), the minimum value of n is phi(p) + b when b >= 1. Also when H congruent to Z(pk1) x Z(p) the minimum value of n is phi(p(k1)) + p - 1 + b for b >= 1. Here phi denotes the Euler function.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 50 条