Multistep low-to-high-temperature heating as a suitable alternative to hot isostatic pressing for improving laser powder-bed fusion-fabricated Ti-6Al-2Zr-1Mo-1V microstructural and mechanical properties

被引:16
|
作者
Wang, C. S. [1 ]
Li, C. L. [1 ]
Chen, R. [2 ]
Qin, H. Z. [1 ]
Ma, L. [1 ]
Mei, Q. S. [1 ]
Zhang, G. D. [1 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, 8 South Donghu Rd, Wuhan 430072, Hubei, Peoples R China
[2] Beijing Xinghang Electromech Equipment Co Ltd, Beijing 100074, Peoples R China
关键词
Laser-powder-bed-fusion; TA15; Postheating; Hot isostatic pressing; High strength; High ductility; ADDITIVELY MANUFACTURED TI-6AL-4V; TENSILE PROPERTIES; GRAIN-STRUCTURE; ALLOY; BEHAVIOR; GLOBULARIZATION; DEFORMATION; PERFORMANCE; DUCTILITY; PHASE;
D O I
10.1016/j.msea.2022.143022
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Laser-powder-bed-fusion (L-PBF) is a subset of additive manufacturing (AM) that has been increasingly used to manufacture titanium components for aerospace applications. However, titanium components fabricated by LPBF exhibit high mechanical strength and poor ductility because of refined alpha' martensite. Postheating is frequently used to transform the martensitic microstructure into equilibrium alpha phase for achieving the desired mechanical properties. In this study, superior strength and ductility were achieved by applying low-to hightemperature (LHT) multistep heating to Ti-6Al-2Zr-1Mo-1V (TA15) samples that were as-fabricated (AF) through L-PBF. For comparison, TA15 samples were subjected to one-step annealing and hot isostatic pressing (HIP). The L-PBF AF microstructure mainly comprised acicular alpha' martensite and exhibited high strength (1383 +/- 9 MPa) and low ductility (6.3 +/- 0.2%). Conventional one-step annealing formed lamellar alpha+beta microstructures that exhibited decreased strength (896-1182 MPa) and improved ductility (12.0-14.3%) compared to AF. Hot isostatic pressing (HIP) treatment formed a lamellar alpha+beta microstructure that exhibited a strength of 1015 +/- 30 MPa and ductility of 15.9 +/- 0.8%. LHT formed a trimodal microstructure comprising lamellar, equiaxed, and short-rod alpha and provided well-balanced strength (1033 +/- 4 MPa) and ductility (16.6 +/- 0.5%), which are superior than those of the samples prepared by using one-step annealing or HIP. Therefore, LHT is a suitable replacement for HIP to prepare L-PBF TA15 exhibiting superior mechanical properties for aerospace applications.
引用
收藏
页数:13
相关论文
共 46 条
  • [1] Multistep low-to-high-temperature heating as a suitable alternative to hot isostatic pressing for improving laser powder-bed fusion-fabricated Ti-6Al-2Zr-1Mo-1V microstructural and mechanical properties
    Wang, C.S.
    Li, C.L.
    Chen, R.
    Qin, H.Z.
    Ma, L.
    Mei, Q.S.
    Zhang, G.D.
    Materials Science and Engineering: A, 2022, 841
  • [2] Dynamic Response of Ti-6Al-2Zr-1Mo-1V Alloy Manufactured by Laser Powder-Bed Fusion
    Qin, Hanzhao
    Maierdan, Alafate
    Li, Nan
    Wang, Changshun
    Li, Chenglin
    MATERIALS, 2024, 17 (13)
  • [3] Effect of cyclic heat treatment on microstructure and tensile property of a laser powder-bed fusion-manufactured Ti-6Al-2Zr-1Mo-1V alloy
    Qin, H. Z.
    Wang, C. S.
    Lei, Y.
    Li, C. L.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 4032 - 4042
  • [4] Towards isotropic behaviour in Ti-6Al-4V fabricated with laser powder bed fusion and super transus hot isostatic pressing
    Zhang, Meili
    Ng, Chi-Ho
    Dehghan-Manshadi, Ali
    Hall, Chris
    Bermingham, Michael J.
    Dargusch, Matthew S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 874
  • [5] Plastic flow and microstructural evolution in Ti-6Al-2Zr-1Mo-1V alloys during hot deformation
    Dong, X. J.
    Lu, S. Q.
    Zhang, H. Z.
    Li, W.
    Wang, K. L.
    MATERIALS SCIENCE AND TECHNOLOGY, 2011, 27 (01) : 453 - 457
  • [6] Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using powder bed fusion – laser beam additive manufacturing process: Effect of hot isostatic pressing
    Squillaci, Linda
    Neikter, Magnus
    Hansson, Thomas
    Pederson, Robert
    Moverare, Johan
    Materials Science and Engineering: A, 2025, 931
  • [7] Tailoring high-temperature mechanical properties of laser powder bed fusion Ti-6.5Al-2Zr-1Mo-1 V alloy via microstructure design
    Zhang, Yu
    Zhai, Zirong
    Wu, Zhaoxuan
    Lin, Wenhu
    Yang, Rui
    Zhang, Zhenbo
    MATERIALS & DESIGN, 2023, 236
  • [8] Effect of hot isostatic pressing on microstructure and mechanical properties of Ti6Al4V-zirconia nanocomposites processed by laser-powder bed fusion
    Hattal, Amine
    Mukhtarova, Kamilla
    Djemai, Madjid
    Chauveau, Thierry
    Hocini, Azziz
    Fouchet, Jean Jacques
    Bacroix, Brigitte
    Gubicza, Jeno
    Dirras, Guy
    MATERIALS & DESIGN, 2022, 214
  • [9] Effect of Microscopic Stress and Strain on Mechanical Properties of Ti-6Al-2Zr-1Mo-1V Alloy
    Ji Zhe
    Guo Tao
    Shen Chengjin
    Xu Jie
    RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (12) : 3806 - 3811
  • [10] Enhanced mechanical properties of Ti-6Al-2Zr-1Mo-1V with ultrafine crystallites and nano-scale twins fabricated by selective laser melting
    Wu, Xu
    Cai, Chao
    Yang, Lei
    Liu, Wan
    Li, Wei
    Li, Ming
    Liu, Jie
    Zhou, Kun
    Shi, Yusheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 738 : 10 - 14