An Essential Role of the HIF-1α-c-Myc Axis in Malignant Progression

被引:31
|
作者
Yoo, Young-Gun [1 ]
Hayashi, Masami [1 ]
Christensen, Jared [1 ]
Huang, L. Eric [1 ,2 ]
机构
[1] Univ Utah, Dept Neurosurg, Clin Neurosci Ctr, Salt Lake City, UT 84132 USA
[2] Univ Utah, Dept Oncol Sci, Salt Lake City, UT 84132 USA
来源
HYPOXIA AND CONSEQUENCES FROM MOLECULE TO MALADY | 2009年 / 1177卷
关键词
apoptosis; DNA repair; genetic alteration; HIF; hypoxia; Myc; PAS; tumor microenvironment; tumor progression; HYPOXIA-INDUCIBLE FACTOR; UBIQUITIN-PROTEASOME PATHWAY; TUMOR-SUPPRESSOR PROTEIN; GENETIC INSTABILITY; PROLINE HYDROXYLATION; HIF-ALPHA; C-MYC; TRANSCRIPTIONAL ACTIVITY; PROLYL HYDROXYLATION; TRANSIENT HYPOXIA;
D O I
10.1111/j.1749-6632.2009.05043.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cancer is a disease of genomic aberration. The hypoxic microenvironment is believed to promote tumor progression via the induction of genetic instability. To understand how hypoxia drives tumor progression, we have shown recently that the hypoxia-inducible transcription factor, HIF-1 alpha, is critical for transcriptional repression of DNA repair genes by a noncanonical mode of action referred to as the "HIF-1 alpha-c-Myc axis." HIF-lot action via the HIF-1 alpha-c-Myc axis is independent of its DNA-binding and transactivation domains; instead it requires the PAS-B domain to displace the transcription activator c-Myc from the target gene promoter for gene repression. Owing to the functional compromise on DNA repair, tumor cells with activated HIF-1 alpha-c-Myc axis display persistent DNA damage, genetic alterations, and malignant progression. However, apoptosis-proficient cells are resistant to such changes. These findings argue that the hypoxic microenvironment plays a critical role in driving genetic alterations especially in apoptosis-deficient cells for malignant progression.
引用
收藏
页码:198 / 204
页数:7
相关论文
共 50 条
  • [1] KIF20A Promotes CRC Progression and the Warburg Effect through the C-Myc/HIF-1α Axis
    Wu, Min
    Wu, Xianqiang
    Han, Jie
    PROTEIN AND PEPTIDE LETTERS, 2024, 31 (02): : 107 - 115
  • [2] C-MYC, HIF-1α, ERG, TKT, and GSTP1: an Axis in Prostate Cancer?
    Boldrini, L.
    Bartoletti, R.
    Giordano, M.
    Manassero, F.
    Selli, C.
    Panichi, M.
    Galli, L.
    Farci, F.
    Faviana, P.
    PATHOLOGY & ONCOLOGY RESEARCH, 2019, 25 (04) : 1423 - 1429
  • [3] The HIF-1α-c-Myc pathway and tumorigenesis: Evading the apoptotic gatekeeper
    Fer, Nicole
    Melillo, Giovanni
    CELL CYCLE, 2011, 10 (19) : 3228 - 3228
  • [4] TARGETING ANGIOGENESIS VIA A C-MYC/HIF-1α-DEPENDENT PATHWAY IN MM
    Podar, K.
    Zhang, J.
    Tonon, G.
    Grabher, C.
    Lababidi, S.
    Zimmerhackl, A.
    Raab, M. R.
    Sonia, S.
    Zhou, Y.
    Cartron, M. A.
    Tai, Y. T.
    Hideshima, T.
    Chauhan, D.
    Anderson, K. A.
    HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2009, 94 : 613 - 613
  • [5] The HIF-1α-C/EBPα Axis
    Janardhan, Harish P.
    SCIENCE SIGNALING, 2008, 1 (43)
  • [6] Targeting angiogenesis via a c-Myc/Hif-1\#945;- dependent pathway in MM
    Podar, Klaus
    Zhang, Jing
    Tonon, Giovanni
    Sattler, Martin
    Grabher, Clemens
    Lababidi, Samir
    Zimmerhackl, Alexander
    Raab, Marc
    Vallet, Sonia
    Zhou, Yiming
    Cartron, Marie-Astrid
    Tai, Yu-Tzu
    Chauhan, Dharminder
    Anderson, Kenneth
    CANCER RESEARCH, 2009, 69
  • [7] SIRT regulates the molecular interaction between c-MYC and HIF-1α in multiple myeloma
    Borsi, Enrica
    Perrone, Giulia
    Terragna, Carolina
    Martello, Marina
    Mancini, Manuela
    Leo, Elisa
    Zamagni, Elena
    Tacchetti, Paola
    Brioli, Annamaria
    Pantani, Lucia
    Zannetti, Beatrice
    Martinelli, Giovanni
    Cavo, Michele
    CANCER RESEARCH, 2013, 73 (08)
  • [8] The Study On The Relationship Between c-Myc and Hif-1α In u266 Cell Line
    Ma, Yanping
    BLOOD, 2013, 122 (21)
  • [9] C-MYC与HIF-1α在肿瘤发病机制中的作用
    常明星
    马艳萍
    国际输血及血液学杂志, 2012, (01) : 74 - 77
  • [10] A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways
    Podar, Klaus
    Anderson, Kenneth C.
    CELL CYCLE, 2010, 9 (09) : 1722 - 1728