STABILITY ANALYSIS OF ROTAVIRUS-MALARIA CO-EPIDEMIC MODEL WITH VACCINATION

被引:3
|
作者
Nyang'inja, Rachel A. [1 ,2 ]
Lawi, George O. [3 ]
Okongo, Mark O. [4 ]
Orwa, Titus O. [5 ]
机构
[1] Shanghai Univ, Dept Math, Shangda Rd, Shanghai 200444, Peoples R China
[2] Taita Taveta Univ, Dept Math, POB 635, Voi 80300, Kenya
[3] Masinde Muliro Univ Sci & Technol, Dept Math, POB 190, Kakamega 50100, Kenya
[4] Chuka Univ, Dept Phys Sci, POB 109, Chuka 60400, Kenya
[5] Strathmore Univ, Inst Math Sci, POB 59857, Nairobi 00200, Kenya
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2019年 / 28卷 / 02期
关键词
basic reproduction number; equilibria; co-infection; stability; rotavirus; vaccination; GLOBAL PROPERTIES; LYAPUNOV FUNCTIONS; DISEASE; TUBERCULOSIS; TRANSMISSION; DYNAMICS; IMPACT; SIR;
D O I
10.12732/dsa.v28i2.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study proposes a model that describes the dynamics of rotavirus and malaria co-epidemics with vaccination using systems of nonlinear ordinary differential equations. We first study the sub-model of rotavirus-only in order to gain insights into how vaccination impacts on transmission dynamics of rotavirus separately, thereafter we study the full model. The basic reproduction numbers of the sub-models of rotavirus-only and malaria-only are determined and used to establish the existence and analyze the stabilities of equilibria. The model is extended to explore the effects of rotavirus and its vaccination on rotavirus-malaria co-infection dynamics. Results show that the rotavirus-only model is globally asymptotically stable when the reproduction number, R-r is less than one while the co-infection model is found to exhibit a backward bifurcation. Further analysis indicate rotavirus vaccination would effectively reduce co-infections with malaria. We carry out numerical simulations to illustrate the potential impact of the vaccination scenarios and to support our analytical findings.
引用
收藏
页码:371 / 407
页数:37
相关论文
共 50 条
  • [1] Stability analysis and optimal vaccination of an SIR epidemic model
    Zaman, Gul
    Kang, Yong Han
    Jung, Il Hyo
    BIOSYSTEMS, 2008, 93 (03) : 240 - 249
  • [2] Stability analysis of an epidemic model with vaccination and time delay
    Turan, Mehmet
    Adiguzel, Rezan Sevinik
    Koc, F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 14828 - 14840
  • [3] Stability analysis of a discrete SIRS epidemic model with vaccination
    Xiang, Lei
    Zhang, Yuyue
    Huang, Jicai
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (03) : 309 - 327
  • [4] Stability analysis and optimal control of an epidemic model with vaccination
    Sharma, Swarnali
    Samanta, G. P.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (03)
  • [5] An age-structured epidemic model of rotavirus with vaccination
    E. Shim
    Z. Feng
    M. Martcheva
    C. Castillo-Chavez
    Journal of Mathematical Biology, 2006, 53 : 719 - 746
  • [6] An age-structured epidemic model of rotavirus with vaccination
    Shim, E.
    Feng, Z.
    Martcheva, M.
    Castillo-Chavez, C.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (04) : 719 - 746
  • [7] An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination
    Ndiaye, S. M.
    Parilina, E. M.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2022, 18 (04): : 555 - 567
  • [8] Stability analysis and optimal control of an SIR epidemic model with vaccination
    Kar, T. K.
    Batabyal, Ashim
    BIOSYSTEMS, 2011, 104 (2-3) : 127 - 135
  • [9] An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination
    Ndiaye, S. M.
    Parilina, E. M.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2022, 18 (02): : 263 - 277
  • [10] A Model Dynamic for Effect Latent Population to Co-epidemic of HIV-TB
    Jafaruddin
    Sutimin
    Ariyanto
    SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2013), 2014, 1587 : 61 - 65