An Evolutionary Approach to Test SELECT SQL Statements Using Mutation Analysis

被引:0
|
作者
Moncao, A. C. [1 ]
Camilo Junior, C. G. [2 ]
Queiroz, L. T. [3 ]
Rodrigues, C. L. [2 ]
Leitao Junior, P. S. [2 ]
Vincenzi, A. M. [4 ]
Araujo, A. A. [5 ]
Dantas, A. [6 ]
de Souza, J. T. [6 ]
机构
[1] Univ Fed Goias, Inst Informat INF, Goiania, Go, Brazil
[2] Univ Fed Goias, Goiania, Go, Brazil
[3] Univ Fed Goias, Inst Informat, Goiania, Go, Brazil
[4] Univ Fed Sao Carlos, Dept Comp, Sao Paulo, Brazil
[5] Univ Fed Ceara, Curso Sistemas Informacao, Campus Crateus, Crateus, Ceara, Brazil
[6] Univ Estadual Ceara, Fortaleza, Ceara, Brazil
关键词
Genetic Algorithm; Mutation Analysis; SQL Statements; Search-Based Software Testing; ALGORITHMS;
D O I
10.1109/TLA.2017.7932701
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.
引用
收藏
页码:1128 / 1136
页数:9
相关论文
共 50 条
  • [1] Shrinking a Database to Perform SQL Mutation Tests Using an Evolutionary Algorithm
    Loureiro Moncao, Ana Claudia B.
    Camilo-Junior, Celso G.
    Queiroz, Leonardo T.
    Rodrigues, Cassio L.
    Sa Leitao-Junior, Plinio de
    Vincenzi, Auri M. R.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 2533 - 2539
  • [2] Anomaly SQL SELECT-Statement Detection Using Entropy Analysis
    Threepak, Thanunchai
    Watcharapupong, Akkradach
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT 1, 2014, 8397 : 301 - 309
  • [3] Graphical Expression of SQL Statements Using Clamshell Diagram
    Murakawa, Takehiko
    Nakagawa, Masaru
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (04) : 713 - 720
  • [4] Analysis of the optimization of SQL statements of the Structured Query Language using large volumes of data
    Vicuna Pino, Ariosto Eugenio
    Ponce Ordonez, Jessica Alexandra
    Erazo Moreta, Orlando Ramiro
    REVISTA PUBLICANDO, 2018, 5 (16): : 70 - 79
  • [5] Using Evolutionary Mutation Testing to Improve the Quality of Test Suites
    Delgado-Perez, Pedro
    Medina-Bulo, Inmaculada
    Nunez, Manuel
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 596 - 603
  • [6] A Mutation Approach of Detecting SQL Injection Vulnerabilities
    Huang, Yanyu
    Fu, Chuan
    Chen, Xuan
    Guo, Hao
    He, Xiaoyu
    Li, Jin
    Liu, Zheli
    CLOUD COMPUTING AND SECURITY, PT II, 2017, 10603 : 175 - 188
  • [7] Enhancing Analytical Select Statements Using Reference Aliases
    Kvet, Michal
    Papan, Jozef
    IEEE ACCESS, 2024, 12 : 27311 - 27330
  • [8] Mutation Analysis for SQL Database Applications
    Cabeca, Andrea Goncalves
    Jino, Mario
    Leitao-Junior, Plinio S.
    2009 FOURTH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING ADVANCES (ICSEA 2009), 2009, : 146 - +
  • [9] Using String Similarity Metrics for Automated Grading of SQL Statements
    Stajduhar, I.
    Mausa, G.
    2015 8TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2015, : 1250 - 1255
  • [10] Combining dynamic and static analysis for automated grading SQL statements
    Wang, Jinshui
    Zhao, Yunpeng
    Tang, Zhengyi
    Xing, Zhenchang
    Journal of Network Intelligence, 2020, 5 (04): : 179 - 190