TOPOLOGICAL COMPLEXITY OF SPATIAL POLYGON SPACES

被引:1
|
作者
Davis, Donald M. [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
关键词
Topological complexity; spatial polygon spaces;
D O I
10.1090/proc/12998
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (l) over bar = (l(1),..., l(n)) be an n-tuple of positive real numbers, and let N((l) over bar) denote the space of equivalence classes of oriented n-gons in R-3 with consecutive sides of lengths l(1),...,l(n), identified under translation and rotation of R-3. Using known results about the integral cohomology ring, we prove that its topological complexity satisfies TC(N((l) over bar)) = 2n-5, provided that N((l) over bar) is nonempty and contains no straight-line polygons.
引用
收藏
页码:3643 / 3645
页数:3
相关论文
共 50 条