Long-Term Visual Object Tracking Benchmark

被引:28
|
作者
Moudgil, Abhinav [1 ]
Gandhi, Vineet [1 ]
机构
[1] Int Inst Informat Technol, Kohli Ctr Intelligent Syst, Ctr Visual Informat Technol, Hyderabad, Telangana, India
来源
关键词
D O I
10.1007/978-3-030-20890-5_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for single object tracking. The dataset consists of 50 HD videos from real world scenarios, encompassing a duration of over 400 min (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and train better deep learning architectures (avoiding/reducing augmentation, which may not reflect real world behaviour). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further present thorough qualitative and quantitative evaluation highlighting the importance of long term aspect of tracking. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long-term tracking. Dataset and tracking results are available at https://amoudgl.github.io/tlp/.
引用
收藏
页码:629 / 645
页数:17
相关论文
共 50 条
  • [1] EgoTracks: A Long-term Egocentric Visual Object Tracking Dataset
    Tang, Hao
    Liang, Kevin J.
    Grauman, Kristen
    Feiszli, Matt
    Wang, Weiyao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] Long-Term Visual Object Tracking via Continual Learning
    Zhang, Hui
    Zhu, Mu
    Zhang, Jing
    Li Zhuo
    IEEE ACCESS, 2019, 7 : 182548 - 182558
  • [3] Long-Term Tracking in the Wild: A Benchmark
    Valmadre, Jack
    Bertinetto, Luca
    Henriques, Joao F.
    Tao, Ran
    Vedaldi, Andrea
    Smeulders, Arnold W. M.
    Torr, Philip H. S.
    Gavves, Efstratios
    COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 692 - 707
  • [4] Combining complementary trackers for enhanced long-term visual object tracking
    Dunnhofer, Matteo
    Simonato, Kristian
    Micheloni, Christian
    IMAGE AND VISION COMPUTING, 2022, 122
  • [5] LVOS: A Benchmark for Long-term Video Object Segmentation
    Hong, Lingyi
    Chen, Wenchao
    Liu, Zhongying
    Zhang, Wei
    Guo, Pinxue
    Chen, Zhaoyu
    Zhang, Wenqiang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13434 - 13446
  • [6] Parallel tracking and detection for long-term object tracking
    Xiong, Dan
    Lu, Huimin
    Yu, Qinghua
    Xiao, Junhao
    Han, Wei
    Zheng, Zhiqiang
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (02):
  • [7] SETh: The Method for Long-Term Object Tracking
    Jedrasiak, Karol
    Andrzejczak, Mariusz
    Nawrat, Aleksander
    COMPUTER VISION AND GRAPHICS, ICCVG 2014, 2014, 8671 : 302 - +
  • [8] Siamese networks with distractor-reduction method for long-term visual object tracking
    Xuan, Shiyu
    Li, Shengyang
    Zhao, Zifei
    Kou, Longxuan
    Zhou, Zhuang
    Xia, Gui-Song
    PATTERN RECOGNITION, 2021, 112
  • [9] High speed long-term visual object tracking algorithm for real robot systems
    Jiang, Muxi
    Li, Rui
    Liu, Qisheng
    Shi, Yingjing
    Tlelo-Cuautle, Esteban
    NEUROCOMPUTING, 2021, 434 : 268 - 284
  • [10] Long-Term Reliable Visual Tracking with UAVs
    Qu, Zhenshen
    Lv, Xiao
    Liu, Junyu
    Jiang, Li
    Liang, Liang
    Xie, Weinan
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2000 - 2005