Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces

被引:10
|
作者
Bertini, Maria Chiara [1 ]
Sinestrari, Carlo [2 ]
机构
[1] Univ Roma Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Via Politecn 1, I-00133 Rome, Italy
关键词
Geometric flows; Asymptotic behaviour; Isoperimetric ratio; POWERS; SURFACES;
D O I
10.1007/s10231-018-0725-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a convex Euclidean hypersurface that evolves by a volume- or area-preserving flow with speed given by a general nonhomogeneous function of the mean curvature. For a broad class of possible speed functions, we show that any closed convex hypersurface converges to a round sphere. The proof is based on the monotonicity of the isoperimetric ratio, which allows to control the inner radius and outer radius of the hypersurface and to deduce uniform bounds on the curvature by maximum principle arguments.
引用
收藏
页码:1295 / 1309
页数:15
相关论文
共 50 条