Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first-principles study

被引:121
|
作者
Zhao, B. [1 ]
Li, C. Y. [1 ]
Liu, L. L. [3 ]
Zhou, B. [1 ]
Zhang, Q. K. [1 ]
Chen, Z. Q. [1 ]
Tang, Z. [2 ]
机构
[1] Wuhan Univ, Dept Phys, Hubei Nucl Solid Phys Key Lab, Wuhan 430072, Peoples R China
[2] E China Normal Univ, Minist Educ China, key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[3] Henan Univ, Minist Eduact, Key Lab Special Funct Mat, Kaifeng 475004, Henan Province, Peoples R China
基金
中国国家自然科学基金;
关键词
Monolayer; MoS2; Cu embedded; Gas molecules; Adsorption; DFT; OPTICAL-PROPERTIES; LAYER MOS2; LARGE-AREA; TRANSITION; DYNAMICS; DEFECTS;
D O I
10.1016/j.apsusc.2016.04.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Adsorption of small gas molecules (O-2, NO, NO2 and NH3) on transition-metal Cu atom embedded mono layer MoS2 was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS2 with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS2 embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS2 with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH3 molecule acts as electron donor after adsorption, which is different from the other gas molecules (O-2, NO, and NO2). The results suggest that MoS2-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:280 / 287
页数:8
相关论文
共 50 条
  • [1] Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study
    Li, Hongxing
    Huang, Min
    Cao, Gengyu
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (22) : 15110 - 15117
  • [2] Gas adsorption on MoS2 monolayer from first-principles calculations
    Zhao, Shijun
    Xue, Jianming
    Kang, Wei
    [J]. CHEMICAL PHYSICS LETTERS, 2014, 595 : 35 - 42
  • [3] NO gas adsorption properties of MoS2 from monolayer to trilayer: a first-principles study
    Wang, Zhaohua
    Zhang, Yanni
    Ren, Yanbing
    Wang, Miaomiao
    Zhang, Zhiyong
    Zhao, Wu
    Yan, Junfeng
    Zhai, Chunxue
    Yun, Jiangni
    [J]. MATERIALS RESEARCH EXPRESS, 2021, 8 (01)
  • [4] First-principles study of NO adsorption on S vacancy of MoS2 monolayer
    Zuo, Yehao
    Jiang, Liqin
    Han, Mingcheng
    Zhi, Zhaoxin
    Ni, Qinru
    Liu, Gang
    Ou, Quanhong
    [J]. CHEMICAL PHYSICS LETTERS, 2023, 833
  • [5] Formaldehyde Molecules Adsorption on Zn Doped Monolayer MoS2: A First-Principles Calculation
    Li, Huili
    Fu, Ling
    He, Chaozheng
    Huo, Jinrong
    Yang, Houyong
    Xie, Tingyue
    Zhao, Guozheng
    Dong, Guohui
    [J]. FRONTIERS IN CHEMISTRY, 2021, 8
  • [6] Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study
    Koh, Eugene Wai Keong
    Chiu, Cheng Hsin
    Lim, Yao Kun
    Zhang, Yong-Wei
    Pan, Hui
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (19) : 14323 - 14328
  • [7] Formaldehyde molecule adsorption on the doped monolayer MoS2: A first-principles study
    Ma, Dongwei
    Ju, Weiwei
    Li, Tingxian
    Yang, Gui
    He, Chaozheng
    Ma, Benyuan
    Tang, Yanan
    Lu, Zhansheng
    Yang, Zongxian
    [J]. APPLIED SURFACE SCIENCE, 2016, 371 : 180 - 188
  • [8] Adsorption studies of alcohol molecules on monolayer MoS2 nanosheet-A first-principles insights
    Nagarajan, V.
    Chandiramouli, R.
    [J]. APPLIED SURFACE SCIENCE, 2017, 413 : 109 - 117
  • [9] NO reduction over an Al-embedded MoS2 monolayer: a first-principles study
    Esrafili, Mehdi D.
    Heydari, Safa
    [J]. RSC ADVANCES, 2019, 9 (67) : 38973 - 38981
  • [10] First-principles study of molecule adsorption on Ni-decorated monolayer MoS2
    Maryam Barzegar
    Masoud Berahman
    Reza Asgari
    [J]. Journal of Computational Electronics, 2019, 18 : 826 - 835