On the Uncertain Single-View Depths in Colonoscopies

被引:6
|
作者
Rodriguez-Puigvert, Javier [1 ]
Recasens, David [1 ]
Civera, Javier [1 ]
Martinez-Cantin, Ruben [1 ]
机构
[1] Univ Zaragoza, Zaragoza, Spain
关键词
Single-view depth; Bayesian deep networks; Depth from monocular endoscopies; RECONSTRUCTION;
D O I
10.1007/978-3-031-16437-8_13
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Estimating depth information from endoscopic images is a prerequisite for a wide set of AI-assisted technologies, such as accurate localization and measurement of tumors, or identification of non-inspected areas. As the domain specificity of colonoscopies -deformable low-texture environments with fluids, poor lighting conditions and abrupt sensor motions- pose challenges to multi-view 3D reconstructions, single-view depth learning stands out as a promising line of research. Depth learning can be extended in a Bayesian setting, which enables continual learning, improves decision making and can be used to compute confidence intervals or quantify uncertainty for in-body measurements. In this paper, we explore for the first time Bayesian deep networks for single-view depth estimation in colonoscopies. Our specific contribution is two-fold: 1) an exhaustive analysis of scalable Bayesian networks for depth learning in different datasets, highlighting challenges and conclusions regarding synthetic-to-real domain changes and supervised vs. self-supervised methods; and 2) a novel teacher-student approach to deep depth learning that takes into account the teacher uncertainty.
引用
收藏
页码:130 / 140
页数:11
相关论文
共 50 条
  • [1] SINGLE-VIEW MAMMOGRAPHY
    WEISHAAR, J
    PATEROK, EM
    MULLER, A
    WILLGEROTH, F
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1976, 101 (51) : 1865 - 1866
  • [2] Single-view matching constraints
    Nordberg, Klas
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, PT 2, 2007, 4842 : 397 - 406
  • [3] Single-View View Synthesis with Multiplane Images
    Tucker, Richard
    Snavely, Noah
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 548 - 557
  • [4] Mass detection in single-view mammograms
    Abdel-Mottaleb, Mohamed
    Carman, Charles S.
    Hill, Charles R.
    Eliot, Gail
    Mankovich, Nicholas J.
    Journal of Digital Imaging, 1997, 10 (3 Suppl 1): : 222 - 223
  • [5] Mass detection in single-view mammograms
    AbdelMottaleb, M
    Carman, CS
    Hill, CR
    Eliot, G
    Mankovich, NJ
    JOURNAL OF DIGITAL IMAGING, 1997, 10 (03) : 222 - 223
  • [6] Single-View and Multi-View Depth Fusion
    Facil, Jose M.
    Concha, Alejo
    Montesano, Luis
    Civera, Javier
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (04): : 1994 - 2001
  • [7] Robust Single-View Instance Recognition
    Held, David
    Thrun, Sebastian
    Savarese, Silvio
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 2152 - 2159
  • [8] Mass detection in single-view mammograms
    Mohamed Abdel-Mottaleb
    Charles S. Carman
    Charles R. Hill
    Gail Eliot
    Nicholas J. Mankovich
    Journal of Digital Imaging, 1997, 10 : 222 - 223
  • [9] Performance comparison of single-view digital breast tomosynthesis plus single-view digital mammography with two-view digital mammography
    Gisella Gennaro
    R. Edward Hendrick
    Patricia Ruppel
    Roberta Chersevani
    Cosimo di Maggio
    Manuela La Grassa
    Luigi Pescarini
    Ilaria Polico
    Alessandro Proietti
    Enrica Baldan
    Elisabetta Bezzon
    Fabio Pomerri
    Pier Carlo Muzzio
    European Radiology, 2013, 23 : 664 - 672
  • [10] Performance comparison of single-view digital breast tomosynthesis plus single-view digital mammography with two-view digital mammography
    Gennaro, Gisella
    Hendrick, R. Edward
    Ruppel, Patricia
    Chersevani, Roberta
    di Maggio, Cosimo
    La Grassa, Manuela
    Pescarini, Luigi
    Polico, Ilaria
    Proietti, Alessandro
    Baldan, Enrica
    Bezzon, Elisabetta
    Pomerri, Fabio
    Muzzio, Pier Carlo
    EUROPEAN RADIOLOGY, 2013, 23 (03) : 664 - 672