RETRIEVAL OF SEA SURFACE WIND SPEED BY SPACEBORNE SAR BASED ON MACHINE LEARNING

被引:3
|
作者
Li, Xiao-Ming [1 ]
机构
[1] Chinese Acad Sci, Key Lab Digital Earth Sci, Aerosp Res Informat Inst, Beijing 100094, Peoples R China
关键词
Spaceborne SAR; sea surface wind; retrieval; machine learning; C-BAND; OCEAN;
D O I
10.1109/IGARSS39084.2020.9323135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we presented a preliminary study of retrieving sea surface wind speed (SSWS) from the Senitnel-1 SAR data acquired in Horizontal-Horizontal (HH) polarization based on a machine learning algorithm, to acquire wind field over Arctic ocean with high spatial resolution and accuracy. The interesting is that we found the simple backward propagation (BP) neutral network performs well under guidance of the widely applied Geophysical Model Functions (GMF) CMODs. The network is trained using collocations of S1 data and ASCAT measurements. Compared to the buoy measurements, the bias, root mean square error (RMSE) and scatter index (SI) of wind speed retrieved by the BP neural network model are 0.1 m/s, 1.38 m/s and 19.85%, respectively.
引用
收藏
页码:4011 / 4014
页数:4
相关论文
共 50 条
  • [1] Assessment of an analytical model for sea surface wind speed retrieval from spaceborne SAR
    Xu, Qing
    Lin, Hui
    Li, Xiaofeng
    Zuo, Juncheng
    Zheng, Quanan
    Pichel, William G.
    Liu, Yuguang
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (04) : 993 - 1008
  • [2] Models of Sea Surface Wind Speed Retrieval by Spaceborne Lidar Data
    Zhang Xinyi
    Wu Dong
    Yang Zhenwei
    He Yan
    [J]. ACTA OPTICA SINICA, 2022, 42 (18)
  • [3] Models of Sea Surface Wind Speed Retrieval by Spaceborne Lidar Data
    Zhang, Xinyi
    Wu, Dong
    Yang, Zhenwei
    He, Yan
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2022, 42 (18):
  • [4] Wind Speed Retrieval Based on Sea Surface Roughness Measurements from Spaceborne Microwave Radiometers
    Hong, Sungwook
    Shin, Inchul
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2013, 52 (02) : 507 - 516
  • [5] Retrieval of Sea Surface Wind Speed from Spaceborne SAR over the Arctic Marginal Ice Zone with a Neural Network
    Li, Xiao-Ming
    Qin, Tingting
    Wu, Ke
    [J]. REMOTE SENSING, 2020, 12 (20) : 1 - 19
  • [6] Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods
    Wang, Changyang
    Yu, Kegen
    Qu, Fangyu
    Bu, Jinwei
    Han, Shuai
    Zhang, Kefei
    [J]. REMOTE SENSING, 2022, 14 (14)
  • [7] On the Use of Azimuth Cutoff for Sea Surface Wind Speed Retrieval From SAR
    Zhu, Yuting
    Grieco, Giuseppe
    Lin, Jiarong
    Portabella, Marcos
    Wang, Xiaoqing
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 10367 - 10379
  • [8] Retrieval of Sea Surface Wind Speed Using Spaceborne Millimeter-Wave Radar Measurements
    Wen, Tao
    Yao, Zhi G.
    Zhao, Zeng L.
    Lin, Long F.
    Han, Zhi G.
    Guo, Lin D.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1807 - 1811
  • [9] RETRIEVAL OF RAINFALL INFORMATION BY SPACEBORNE C-BAND SAR BASED ON MACHINE LEARNING
    Mu, Shanshan
    Li, Xiaofeng
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4163 - 4166
  • [10] GNSS-R Global Sea Surface Wind Speed Retrieval Based on Deep Learning
    Liu, Xiaoxu
    Bai, Weihua
    Tan, Guangyuan
    Huang, Feixiong
    Xia, Junming
    Yin, Cong
    Sun, Yueqiang
    Du, Qifei
    Meng, Xiangguang
    Liu, Congliang
    Hu, Peng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61